These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31584259)

  • 1. Effect of Nanogap Morphology on Plasmon Coupling.
    Kim M; Kwon H; Lee S; Yoon S
    ACS Nano; 2019 Oct; 13(10):12100-12108. PubMed ID: 31584259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode-Selective Plasmon Coupling between Au Nanorods and Au Nanospheres.
    Yun S; Yoon S
    J Phys Chem Lett; 2023 Nov; 14(45):10225-10232. PubMed ID: 37931252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of asymmetric morphology on coupling surface plasmon modes and generalized plasmon ruler.
    Zhang KJ; Da B; Ding ZJ
    Ultramicroscopy; 2018 Feb; 185():55-64. PubMed ID: 29182920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling.
    Pellarin M; Ramade J; Rye JM; Bonnet C; Broyer M; Lebeault MA; Lermé J; Marguet S; Navarro JR; Cottancin E
    ACS Nano; 2016 Dec; 10(12):11266-11279. PubMed ID: 28024347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging the Nanogap with Light: Continuous Tuning of Plasmon Coupling between Gold Nanoparticles.
    Jung H; Cha H; Lee D; Yoon S
    ACS Nano; 2015 Dec; 9(12):12292-300. PubMed ID: 26467291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer.
    Sheikholeslami S; Jun YW; Jain PK; Alivisatos AP
    Nano Lett; 2010 Jul; 10(7):2655-60. PubMed ID: 20536212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays.
    Mahmoud MA
    J Chem Phys; 2015 Aug; 143(7):074703. PubMed ID: 26298144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures.
    Chang WS; Slaughter LS; Khanal BP; Manna P; Zubarev ER; Link S
    Nano Lett; 2009 Mar; 9(3):1152-7. PubMed ID: 19193117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Nanoparticle Size on Plasmon-Driven Reaction Efficiency.
    Kim S; Lee S; Yoon S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4163-4169. PubMed ID: 35006675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-satellite-satellite hierarchical nanostructures: assembly, plasmon coupling, and gap-selective surface-enhanced Raman scattering.
    Trinh HD; Kim S; Park J; Yoon S
    Nanoscale; 2022 Nov; 14(45):17003-17012. PubMed ID: 36354377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.
    Nome RA; Guffey MJ; Scherer NF; Gray SK
    J Phys Chem A; 2009 Apr; 113(16):4408-15. PubMed ID: 19267445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres.
    Jiang N; Ruan Q; Qin F; Wang J; Lin HQ
    Nanoscale; 2015 Aug; 7(29):12516-26. PubMed ID: 26139347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.
    Brintlinger T; Herzing AA; Long JP; Vurgaftman I; Stroud R; Simpkins BS
    ACS Nano; 2015 Jun; 9(6):6222-32. PubMed ID: 25961937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced plasmon coupling of partly embedded gold nanospheres with surrounding silicon.
    Zuo Z; Wen Y; Zhang S; Qu J; Cui G; Shi Y
    Nanotechnology; 2017 Jul; 28(28):285201. PubMed ID: 28562370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices.
    Jeon HB; Tsalu PV; Ha JW
    Sci Rep; 2019 Sep; 9(1):13635. PubMed ID: 31541135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.