These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31585028)

  • 1. Modular Access to Eight-Membered N-Heterocycles by Directed Carbonylative C-C Bond Activation of Aminocyclopropanes.
    Boyd O; Wang GW; Sokolova OO; Calow ADJ; Bertrand SM; Bower JF
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):18844-18848. PubMed ID: 31585028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Nitrogen Heterocycles
    Dalling AG; Bower JF
    Chimia (Aarau); 2018 Sep; 72(9):595-600. PubMed ID: 30257733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directing group enhanced carbonylative ring expansions of amino-substituted cyclopropanes: rhodium-catalyzed multicomponent synthesis of N-heterobicyclic enones.
    Shaw MH; Melikhova EY; Kloer DP; Whittingham WG; Bower JF
    J Am Chem Soc; 2013 Apr; 135(13):4992-5. PubMed ID: 23488745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular Access to Azepines by Directed Carbonylative C-C Bond Activation of Aminocyclopropanes.
    Wang GW; Bower JF
    J Am Chem Soc; 2018 Feb; 140(8):2743-2747. PubMed ID: 29461050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible C-C bond activation enables stereocontrol in Rh-catalyzed carbonylative cycloadditions of aminocyclopropanes.
    Shaw MH; McCreanor NG; Whittingham WG; Bower JF
    J Am Chem Soc; 2015 Jan; 137(1):463-8. PubMed ID: 25539136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonylative N-Heterocyclization via Nitrogen-Directed C-C Bond Activation of Nonactivated Cyclopropanes.
    Calow ADJ; Dailler D; Bower JF
    J Am Chem Soc; 2022 Jun; 144(25):11069-11074. PubMed ID: 35715228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonylative C-C Bond Activation of Aminocyclopropanes Using a Temporary Directing Group Strategy.
    Wang GW; Sokolova OO; Young TA; Christodoulou EMS; Butts CP; Bower JF
    J Am Chem Soc; 2020 Nov; 142(45):19006-19011. PubMed ID: 33125219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An endo-Directing-Group Strategy Unlocks Enantioselective (3+1+2) Carbonylative Cycloadditions of Aminocyclopropanes.
    Sokolova OO; Bower JF
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205007. PubMed ID: 35611866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Initiation Modes for Directed Carbonylative C-C Bond Activation: Rhodium-Catalyzed (3 + 1 + 2) Cycloadditions of Aminomethylcyclopropanes.
    Wang GW; McCreanor NG; Shaw MH; Whittingham WG; Bower JF
    J Am Chem Soc; 2016 Oct; 138(41):13501-13504. PubMed ID: 27709913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C sp 3-H bond activation triggered by formation of metallacycles: rhodium(I)-catalyzed cyclopropanation/cyclization of allenynes.
    Oonishi Y; Kitano Y; Sato Y
    Angew Chem Int Ed Engl; 2012 Jul; 51(29):7305-8. PubMed ID: 22740384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capture-Collapse Heterocyclization: 1,3-Diazepanes by C-N Reductive Elimination from Rhodacyclopentanones.
    McCreanor NG; Stanton S; Bower JF
    J Am Chem Soc; 2016 Sep; 138(36):11465-8. PubMed ID: 27589060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonylative C-C Bond Activation of Electron-Poor Cyclopropanes: Rhodium-Catalyzed (3+1+2) Cycloadditions of Cyclopropylamides.
    Dalling AG; Yamauchi T; McCreanor NG; Cox L; Bower JF
    Angew Chem Int Ed Engl; 2019 Jan; 58(1):221-225. PubMed ID: 30397992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dearomatization of electron poor six-membered N-heterocycles through [3 + 2] annulation with aminocyclopropanes.
    Preindl J; Chakrabarty S; Waser J
    Chem Sci; 2017 Oct; 8(10):7112-7118. PubMed ID: 29147541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodium-catalyzed [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes and CO: reaction design, development, application in natural product synthesis, and inspiration for developing new reactions for synthesis of eight-membered carbocycles.
    Wang Y; Yu ZX
    Acc Chem Res; 2015 Aug; 48(8):2288-96. PubMed ID: 26227886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.
    Archambeau A; Miege F; Meyer C; Cossy J
    Acc Chem Res; 2015 Apr; 48(4):1021-31. PubMed ID: 25763601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunably strained metallacycles enable modular differentiation of aza-arene C-H bonds.
    Xi L; Wang M; Liang Y; Zhao Y; Shi Z
    Nat Commun; 2023 Jul; 14(1):3986. PubMed ID: 37414774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselective ruthenium-catalyzed carbonylative direct arylation of five-membered and condensed heterocycles.
    Pospech J; Tlili A; Spannenberg A; Neumann H; Beller M
    Chemistry; 2014 Mar; 20(11):3135-41. PubMed ID: 24519915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Carbazoles and Carbazole-Containing Heterocycles via Rhodium-Catalyzed Tandem Carbonylative Benzannulations.
    Song W; Li X; Yang K; Zhao XL; Glazier DA; Xi BM; Tang W
    J Org Chem; 2016 Apr; 81(7):2930-42. PubMed ID: 26963834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodium-catalyzed cyclization of diynes with nitrones: a formal [2+2+5] approach to bridged eight-membered heterocycles.
    Wang C; Wang D; Yan H; Wang H; Pan B; Xin X; Li X; Wu F; Wan B
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11940-3. PubMed ID: 25220662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of medium ring nitrogen heterocycles via a tandem copper-catalyzed C-N bond formation-ring-expansion process.
    Klapars A; Parris S; Anderson KW; Buchwald SL
    J Am Chem Soc; 2004 Mar; 126(11):3529-33. PubMed ID: 15025480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.