These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31585444)

  • 41. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept.
    Lee H; Fahimian BP; Xing L
    Phys Med Biol; 2017 Mar; 62(6):2176-2193. PubMed ID: 28079527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of compensator and imaging geometry on the distribution of x-ray scatter in CBCT.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2011 Feb; 38(2):897-914. PubMed ID: 21452727
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cone-beam CT dose and imaging performance evaluation with a modular, multipurpose phantom.
    Siewerdsen JH; Uneri A; Hernandez AM; Burkett GW; Boone JM
    Med Phys; 2020 Feb; 47(2):467-479. PubMed ID: 31808950
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scatter correction in cone-beam CT via a half beam blocker technique allowing simultaneous acquisition of scatter and image information.
    Lee H; Xing L; Lee R; Fahimian BP
    Med Phys; 2012 May; 39(5):2386-95. PubMed ID: 22559608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simulated scatter performance of an inverse-geometry dedicated breast CT system.
    Bhagtani R; Schmidt TG
    Med Phys; 2009 Mar; 36(3):788-96. PubMed ID: 19378739
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.
    Yang Y; Armour M; Wang KK; Gandhi N; Iordachita I; Siewerdsen J; Wong J
    Phys Med Biol; 2015 Jul; 60(13):5163-77. PubMed ID: 26083659
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A model-based scatter artifacts correction for cone beam CT.
    Zhao W; Vernekohl D; Zhu J; Wang L; Xing L
    Med Phys; 2016 Apr; 43(4):1736. PubMed ID: 27036571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physical evaluation of prototype high-performance anti-scatter grids: potential for improved digital radiographic image quality.
    Fetterly KA; Schueler BA
    Phys Med Biol; 2009 Jan; 54(2):N37-42. PubMed ID: 19098352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An interprojection sensor fusion approach to estimate blocked projection signal in synchronized moving grid-based CBCT system.
    Zhang H; Ren L; Kong V; Giles W; Zhang Y; Jin JY
    Med Phys; 2016 Jan; 43(1):268. PubMed ID: 26745920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies of performance of antiscatter grids in digital radiography: effect on signal-to-noise ratio.
    Chan HP; Lam KL; Wu YZ
    Med Phys; 1990; 17(4):655-64. PubMed ID: 2215411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system.
    Shen SZ; Bloomquist AK; Mawdsley GE; Yaffe MJ; Elbakri I
    Med Phys; 2006 Apr; 33(4):1108-15. PubMed ID: 16696488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anti-scatter grid artifact elimination for high resolution x-ray imaging CMOS detectors.
    Rana R; Singh V; Jain A; Bednarek DR; Rudin S
    Proc SPIE Int Soc Opt Eng; 2015; 9412():. PubMed ID: 26877578
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantification of scattered radiation in projection mammography: four practical methods compared.
    Salvagnini E; Bosmans H; Struelens L; Marshall NW
    Med Phys; 2012 Jun; 39(6):3167-80. PubMed ID: 22755701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mobile C-Arm with a CMOS detector: Technical assessment of fluoroscopy and Cone-Beam CT imaging performance.
    Sheth NM; Zbijewski W; Jacobson MW; Abiola G; Kleinszig G; Vogt S; Soellradl S; Bialkowski J; Anderson WS; Weiss CR; Osgood GM; Siewerdsen JH
    Med Phys; 2018 Dec; 45(12):5420-5436. PubMed ID: 30339271
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Technical evaluation of a prototype ratio 29:1 grid for adult patient cardiovascular angiography imaging conditions.
    Fetterly KA; Schueler BA; Hindal MD; Miller DL
    Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34157690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hand-wrist, knee, and foot-ankle dosimetry and image quality measurements of a novel extremity imaging unit providing CBCT and 2D imaging options.
    Ludlow JB
    Med Phys; 2018 Nov; 45(11):4955-4963. PubMed ID: 30229941
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of x-ray beam alignment on the performance of antiscatter grids.
    Carlin MD; Nishikawa RM; MacMahon H; Doi K
    Med Phys; 1996 Aug; 23(8):1347-50. PubMed ID: 8873031
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Effect of Interspaces of Anti-scatter Grid on the Image Improvement Factor].
    Saito H; Asano H; Miyake H; Nakamura H; Imai Y; Ogura I; Negishi T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2018; 74(10):1186-1193. PubMed ID: 30344216
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of the geometry and speed of a moving blocker system for cone-beam computed tomography scatter correction.
    Chen X; Ouyang L; Yan H; Jia X; Li B; Lyu Q; Zhang Y; Wang J
    Med Phys; 2017 Sep; 44(9):e215-e229. PubMed ID: 28901608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous reduction of radiation dose and scatter for CBCT by using collimators.
    Li T; Li X; Yang Y; Zhang Y; Heron DE; Huq MS
    Med Phys; 2013 Dec; 40(12):121913. PubMed ID: 24320524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.