These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31585557)

  • 1. A nanocellulose-based colorimetric assay kit for smartphone sensing of iron and iron-chelating deferoxamine drug in biofluids.
    Faham S; Golmohammadi H; Ghavami R; Khayatian G
    Anal Chim Acta; 2019 Dec; 1087():104-112. PubMed ID: 31585557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lab-on-nanopaper: An optical sensing bioplatform based on curcumin embedded in bacterial nanocellulose as an albumin assay kit.
    Naghdi T; Golmohammadi H; Vosough M; Atashi M; Saeedi I; Maghsoudi MT
    Anal Chim Acta; 2019 Sep; 1070():104-111. PubMed ID: 31103163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Easy Diagnosis of Jaundice: A Smartphone-Based Nanosensor Bioplatform Using Photoluminescent Bacterial Nanopaper for Point-of-Care Diagnosis of Hyperbilirubinemia.
    Tabatabaee RS; Golmohammadi H; Ahmadi SH
    ACS Sens; 2019 Apr; 4(4):1063-1071. PubMed ID: 30896150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrophotometric and visual determination of zoledronic acid by using a bacterial cell-derived nanopaper doped with curcumin.
    Faham S; Ghavami R; Golmohammadi H; Khayatian G
    Mikrochim Acta; 2019 Oct; 186(11):719. PubMed ID: 31655905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel DFO-functionalized mesoporous silica for iron sensing. Part 2. Experimental detection of free iron concentration (pFe) in urine samples.
    Alberti G; Emma G; Colleoni R; Pesavento M; Nurchi VM; Biesuz R
    Analyst; 2014 Aug; 139(16):3940-8. PubMed ID: 24883429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of desferrioxamine and its iron chelating metabolites by high-performance liquid chromatography and simultaneous ultraviolet-visible/radioactive detection.
    Singh S; Mohammed N; Ackerman R; Porter JB; Hider RC
    Anal Biochem; 1992 May; 203(1):116-20. PubMed ID: 1524206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopaper-based screen-printed electrodes: a hybrid sensing bioplatform for dual opto-electrochemical sensing applications.
    Eynaki H; Kiani MA; Golmohammadi H
    Nanoscale; 2020 Sep; 12(35):18409-18417. PubMed ID: 32941575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric sensing of oxalate based on its inhibitory effect on the reaction of Fe (III) with curcumin nanoparticles.
    Pourreza N; Lotfizadeh N; Golmohammadi H
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():251-256. PubMed ID: 29154216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and selective detection of Fe (III) by using a smartphone-based device as a portable detector and hydroxyl functionalized metal-organic frameworks as the fluorescence probe.
    Zhao Y; Ouyang H; Feng S; Luo Y; Shi Q; Zhu C; Chang YC; Li L; Du D; Yang H
    Anal Chim Acta; 2019 Oct; 1077():160-166. PubMed ID: 31307705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphone coupled with paper-based chemical sensor for on-site determination of iron(III) in environmental and biological samples.
    Shrivas K; Monisha ; Kant T; Karbhal I; Kurrey R; Sahu B; Sinha D; Patra GK; Deb MK; Pervez S
    Anal Bioanal Chem; 2020 Mar; 412(7):1573-1583. PubMed ID: 31932862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curcumin contributes to in vitro removal of non-transferrin bound iron by deferiprone and desferrioxamine in thalassemic plasma.
    Srichairatanakool S; Thephinlap C; Phisalaphong C; Porter JB; Fucharoen S
    Med Chem; 2007 Sep; 3(5):469-74. PubMed ID: 17897073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constituting fully integrated colorimetric analysis system for Fe(III) on multifunctional nitrogen-doped MoO
    Lin F; Cai J; Li Y; Yu H; Li S
    Talanta; 2018 Apr; 180():352-357. PubMed ID: 29332822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing.
    Wang X; Chang TW; Lin G; Gartia MR; Liu GL
    Anal Chem; 2017 Jan; 89(1):611-615. PubMed ID: 27976865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate.
    Lai W; Tang D; Zhuang J; Chen G; Yang H
    Anal Chem; 2014 May; 86(10):5061-8. PubMed ID: 24785462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple small size and low cost sensor based on surface plasmon resonance for selective detection of Fe(III).
    Cennamo N; Alberti G; Pesavento M; D'Agostino G; Quattrini F; Biesuz R; Zeni L
    Sensors (Basel); 2014 Mar; 14(3):4657-71. PubMed ID: 24608007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitin Nanofiber Paper toward Optical (Bio)sensing Applications.
    Naghdi T; Golmohammadi H; Yousefi H; Hosseinifard M; Kostiv U; Horák D; Merkoçi A
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15538-15552. PubMed ID: 32148018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid.
    Kong L; Gan Y; Liang T; Zhong L; Pan Y; Kirsanov D; Legin A; Wan H; Wang P
    Anal Chim Acta; 2020 Jan; 1093():150-159. PubMed ID: 31735208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications.
    Abbasi-Moayed S; Golmohammadi H; Hormozi-Nezhad MR
    Nanoscale; 2018 Feb; 10(5):2492-2502. PubMed ID: 29340401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopaper as an Optical Sensing Platform.
    Morales-Narváez E; Golmohammadi H; Naghdi T; Yousefi H; Kostiv U; Horák D; Pourreza N; Merkoçi A
    ACS Nano; 2015 Jul; 9(7):7296-305. PubMed ID: 26135050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.