These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 31585559)

  • 1. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA).
    Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W
    Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A.
    Wei Y; Zhang J; Wang X; Duan Y
    Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A.
    Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J
    Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence Anisotropy-Based Signal-Off and Signal-On Aptamer Assays Using Lissamine Rhodamine B as a Label for Ochratoxin A.
    Li Y; Zhang N; Wang H; Zhao Q
    J Agric Food Chem; 2020 Apr; 68(14):4277-4283. PubMed ID: 32182058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL; Zhang YF; Sun GP; Wang XN; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplified Fluorescent Aptasensor for Ochratoxin A Assay Based on Graphene Oxide and RecJ
    Zhao H; Xiong D; Yan Y; Ma C
    Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33113906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation.
    Wang C; Tan R; Li J; Zhang Z
    Anal Bioanal Chem; 2019 Apr; 411(11):2405-2414. PubMed ID: 30828760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-Based Fluorometric Ochratoxin A Assay Based on Photoinduced Electron Transfer.
    Zhao H; Xiang X; Chen M; Ma C
    Toxins (Basel); 2019 Jan; 11(2):. PubMed ID: 30678367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional MoS
    Tang J; Huang Y; Cheng Y; Huang L; Zhuang J; Tang D
    Mikrochim Acta; 2018 Feb; 185(3):162. PubMed ID: 29594615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III.
    Liu R; Wu H; Lv L; Kang X; Cui C; Feng J; Guo Z
    Mikrochim Acta; 2018 Apr; 185(5):254. PubMed ID: 29656368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification.
    Ma C; Wu K; Zhao H; Liu H; Wang K; Xia K
    Mikrochim Acta; 2018 Jun; 185(7):347. PubMed ID: 29961128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins.
    Wang X; Gao X; He J; Hu X; Li Y; Li X; Fan L; Yu HZ
    Analyst; 2019 Jun; 144(12):3826-3835. PubMed ID: 31090762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor.
    Wang S; Zhang Y; Pang G; Zhang Y; Guo S
    Anal Chem; 2017 Feb; 89(3):1704-1709. PubMed ID: 28208258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe.
    Wang B; Wu Y; Chen Y; Weng B; Xu L; Li C
    Biosens Bioelectron; 2016 Jul; 81():125-130. PubMed ID: 26938491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-Free G-Quadruplex Aptamer Fluorescence Assay for Ochratoxin A Using a Thioflavin T Probe.
    Wu K; Ma C; Zhao H; He H; Chen H
    Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29757205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent sensing ochratoxin A with single fluorophore-labeled aptamer.
    Zhao Q; Geng X; Wang H
    Anal Bioanal Chem; 2013 Jul; 405(19):6281-6. PubMed ID: 23728728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification.
    Wu H; Liu R; Kang X; Liang C; Lv L; Guo Z
    Mikrochim Acta; 2017 Dec; 185(1):27. PubMed ID: 29594393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of allosteric nucleotide sites of tetramethylrhodamine-labeled aptamer for noncompetitive aptamer-based fluorescence anisotropy detection of a small molecule, ochratoxin A.
    Zhao Q; Lv Q; Wang H
    Anal Chem; 2014 Jan; 86(2):1238-45. PubMed ID: 24354298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of Fe
    Hu S; Ouyang W; Guo L; Lin Z; Jiang X; Qiu B; Chen G
    Biosens Bioelectron; 2017 Jun; 92():718-723. PubMed ID: 27856163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection.
    Chen J; Zhang X; Cai S; Wu D; Chen M; Wang S; Zhang J
    Biosens Bioelectron; 2014 Jul; 57():226-31. PubMed ID: 24590125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.