These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31585858)

  • 1. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae.
    Easmin F; Sasano Y; Kimura S; Hassan N; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2020 Feb; 129(2):129-139. PubMed ID: 31585858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae.
    Sasano Y; Nagasawa K; Kaboli S; Sugiyama M; Harashima S
    Sci Rep; 2016 Aug; 6():30278. PubMed ID: 27530680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae.
    Hao H; Wang X; Jia H; Yu M; Zhang X; Tang H; Zhang L
    Anal Biochem; 2016 Sep; 509():118-123. PubMed ID: 27402178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 6. CRISPR-PCDup: a novel approach for simultaneous segmental chromosomal duplication in Saccharomyces cerevisiae.
    Hassan N; Sasano Y; Kimura S; Easmin F; Ekino K; Taguchi H; Harashima S
    AMB Express; 2020 Feb; 10(1):27. PubMed ID: 32016717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Easy efficient HDR-based targeted knock-in in
    Singh R; Chandel S; Ghosh A; Gautam A; Huson DH; Ravichandiran V; Ghosh D
    Bioengineered; 2022 Jun; 13(6):14857-14871. PubMed ID: 36602175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.
    Lian J; Bao Z; Hu S; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1630-1635. PubMed ID: 29460422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 10. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 13. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 14. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 16. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications.
    Cai P; Gao J; Zhou Y
    Microb Cell Fact; 2019 Apr; 18(1):63. PubMed ID: 30940138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9.
    Zhao D; Yuan S; Xiong B; Sun H; Ye L; Li J; Zhang X; Bi C
    Microb Cell Fact; 2016 Dec; 15(1):205. PubMed ID: 27908280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae.
    Sugiyama M; Nakazawa T; Murakami K; Sumiya T; Nakamura A; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):545-53. PubMed ID: 18677473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains.
    Wijsman M; Swiat MA; Marques WL; Hettinga JK; van den Broek M; Torre Cortés P; Mans R; Pronk JT; Daran JM; Daran-Lapujade P
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30285096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.