These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31585872)

  • 21. Oxidative stress in atherosclerosis: the role of microRNAs in arterial remodeling.
    Zampetaki A; Dudek K; Mayr M
    Free Radic Biol Med; 2013 Sep; 64():69-77. PubMed ID: 23797034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mangifera indica L. extract (Vimang) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse.
    Pardo-Andreu GL; Paim BA; Castilho RF; Velho JA; Delgado R; Vercesi AE; Oliveira HC
    Pharmacol Res; 2008 May; 57(5):332-8. PubMed ID: 18450471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans.
    Yu E; Calvert PA; Mercer JR; Harrison J; Baker L; Figg NL; Kumar S; Wang JC; Hurst LA; Obaid DR; Logan A; West NE; Clarke MC; Vidal-Puig A; Murphy MP; Bennett MR
    Circulation; 2013 Aug; 128(7):702-12. PubMed ID: 23841983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative Stress in Atherosclerosis.
    Kattoor AJ; Pothineni NVK; Palagiri D; Mehta JL
    Curr Atheroscler Rep; 2017 Sep; 19(11):42. PubMed ID: 28921056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LOX-1, oxidant stress, mtDNA damage, autophagy, and immune response in atherosclerosis.
    Ding Z; Liu S; Wang X; Dai Y; Khaidakov M; Romeo F; Mehta JL
    Can J Physiol Pharmacol; 2014 Jul; 92(7):524-30. PubMed ID: 24959993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Atherogenic modification of low-density lipoproteins].
    Sukhorukov VN; Karagodin VP; Orekhov AN
    Biomed Khim; 2016 May; 62(4):391-402. PubMed ID: 27562992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes.
    Magnani ND; Marchini T; Calabró V; Alvarez S; Evelson P
    Front Endocrinol (Lausanne); 2020; 11():568305. PubMed ID: 33071976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria.
    Xiao M; Zhong H; Xia L; Tao Y; Yin H
    Free Radic Biol Med; 2017 Oct; 111():316-327. PubMed ID: 28456642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cardiovascular aging: spotlight on mitochondria.
    Ali MA; Gioscia-Ryan R; Yang D; Sutton NR; Tyrrell DJ
    Am J Physiol Heart Circ Physiol; 2024 Feb; 326(2):H317-H333. PubMed ID: 38038719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging roles of mitochondria ROS in atherosclerotic lesions: causation or association?
    Wang Y; Tabas I
    J Atheroscler Thromb; 2014; 21(5):381-90. PubMed ID: 24717761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fetal programming of atherosclerosis: possible role of the mitochondria.
    Leduc L; Levy E; Bouity-Voubou M; Delvin E
    Eur J Obstet Gynecol Reprod Biol; 2010 Apr; 149(2):127-30. PubMed ID: 20053495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is atherosclerosis a mitochondrial disorder?
    Finsterer J
    Vasa; 2007 Nov; 36(4):229-40. PubMed ID: 18357915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondria and vascular pathology.
    Di Lisa F; Kaludercic N; Carpi A; Menabò R; Giorgio M
    Pharmacol Rep; 2009; 61(1):123-30. PubMed ID: 19307700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD.
    Poznyak AV; Bharadwaj D; Prasad G; Grechko AV; Sazonova MA; Orekhov AN
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impact of mitochondrial dysfunction on the pathogenesis of atherosclerosis.
    Stepaniuk N; Stepaniuk A; Hudz N; Havryliuk I
    Wiad Lek; 2024; 77(1):153-159. PubMed ID: 38431820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low Cytochrome Oxidase 1 Links Mitochondrial Dysfunction to Atherosclerosis in Mice and Pigs.
    Holvoet P; Vanhaverbeke M; Geeraert B; De Keyzer D; Hulsmans M; Janssens S
    PLoS One; 2017; 12(1):e0170307. PubMed ID: 28122051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of mitochondrial DNA damage in the development of atherosclerosis.
    Yu EP; Bennett MR
    Free Radic Biol Med; 2016 Nov; 100():223-230. PubMed ID: 27320189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melatonin-mitochondria interplay in health and disease.
    Acuña Castroviejo D; López LC; Escames G; López A; García JA; Reiter RJ
    Curr Top Med Chem; 2011; 11(2):221-40. PubMed ID: 21244359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spontaneous experimental atherosclerosis in hypercholesterolemic mice advances with ageing and correlates with mitochondrial reactive oxygen species.
    Dorighello GG; Paim BA; Leite ACR; Vercesi AE; Oliveira HCF
    Exp Gerontol; 2018 Aug; 109():47-50. PubMed ID: 28213051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.