BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31585995)

  • 21. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine.
    Meng W; Wang R; Xiao D
    Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Escherichia coli for high-yielding 2,5-Dimethylpyrazine synthesis from L-Threonine by reconstructing metabolic pathways and enhancing cofactors regeneration.
    Liu XX; Wang Y; Zhang JH; Lu YF; Dong ZX; Yue C; Huang XQ; Zhang SP; Li DD; Yao LG; Tang CD
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):44. PubMed ID: 38500189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial catabolism of threonine. Threonine degradation initiated by L-threonine-NAD+ oxidoreductase.
    Bell SC; Turner JM
    Biochem J; 1976 May; 156(2):449-58. PubMed ID: 942418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aminoacetone oxidase from Streptococcus oligofermentans belongs to a new three-domain family of bacterial flavoproteins.
    Molla G; Nardini M; Motta P; D'Arrigo P; Panzeri W; Pollegioni L
    Biochem J; 2014 Dec; 464(3):387-99. PubMed ID: 25269103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolism of 2-oxoaldehydes in yeasts. Possible role of glycolytic bypath as a detoxification system in L-threonine catabolism by Saccharomyces cerevisiae.
    Murata K; Saikusa T; Fukuda Y; Watanabe K; Inoue Y; Shimosaka M; Kimura A
    Eur J Biochem; 1986 Jun; 157(2):297-301. PubMed ID: 3086094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-dependent decarboxylation of 2-amino-3-ketobutyrate, the unstable intermediate in the threonine dehydrogenase-initiated pathway for threonine utilization.
    Marcus JP; Dekker EE
    Biochem Biophys Res Commun; 1993 Feb; 190(3):1066-72. PubMed ID: 8439306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A feeding strategy for tetramethylpyrazine production by Bacillus subtilis based on the stimulating effect of ammonium phosphate.
    Zhu BF; Xu Y
    Bioprocess Biosyst Eng; 2010 Oct; 33(8):953-9. PubMed ID: 20306320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of 2,5-dimethylpyrazine by Rhodococcus erythropolis strain DP-45 isolated from a waste gas treatment plant of a fishmeal processing company.
    Rappert S; Li R; Kokova M; Antholz M; Nagorny S; Francke W; Müller R
    Biodegradation; 2007 Oct; 18(5):585-96. PubMed ID: 17120096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dietary protein and amino acid levels alter threonine dehydrogenase activity in hepatic mitochondria of Gallus domesticus.
    Davis AJ; Austic RE
    J Nutr; 1997 May; 127(5):738-44. PubMed ID: 9164995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrazine formation from serine and threonine.
    Shu CK
    J Agric Food Chem; 1999 Oct; 47(10):4332-5. PubMed ID: 10552811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precursor supply strategy for tetramethylpyrazine production by bacillus subtilis on solid-state fermentation of wheat bran.
    Hao F; Wu Q; Xu Y
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1346-52. PubMed ID: 23306895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in rectal amino acid levels determine bacteria-originated sex pheromone specificity in two closely related flies.
    Gao Z; Xie M; Gui S; He M; Lu Y; Wang L; Chen J; Smagghe G; Gershenzon J; Cheng D
    ISME J; 2023 Oct; 17(10):1741-1750. PubMed ID: 37550382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. rocF affects the production of tetramethylpyrazine in fermented soybeans with Bacillus subtilis BJ3-2.
    Liu Z; Wu Y; Zhang L; Tong S; Jin J; Gong X; Zhong J
    BMC Biotechnol; 2022 Jul; 22(1):18. PubMed ID: 35787694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and function of the l-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis.
    Bowyer A; Mikolajek H; Stuart JW; Wood SP; Jamil F; Rashid N; Akhtar M; Cooper JB
    J Struct Biol; 2009 Nov; 168(2):294-304. PubMed ID: 19616102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alkylpyrazines and other volatiles in cocoa liquors at pH 5 to 8, by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS).
    Huang Y; Barringer SA
    J Food Sci; 2010; 75(1):C121-7. PubMed ID: 20492142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. L-Threonine dehydrogenase of chicken liver. Purification, characterization, and physiological significance.
    Aoyama Y; Motokawa Y
    J Biol Chem; 1981 Dec; 256(23):12367-73. PubMed ID: 7028754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial metabolism of amino ketones. L-1-aminopropan-2-ol dehydrogenase and L-threonine dehydrogenase in Escherichia coli.
    Turner JM
    Biochem J; 1967 Jul; 104(1):112-21. PubMed ID: 5340733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy.
    Zhu BF; Xu Y
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):815-21. PubMed ID: 20437078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth, enzyme levels, and some metabolic properties of an Escherichia coli mutant grown on L-threonine as the sole carbon source.
    Boylan SA; Dekker EE
    J Bacteriol; 1983 Oct; 156(1):273-80. PubMed ID: 6413491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The first thermophilic alpha-oxoamine synthase family enzyme that has activities of 2-amino-3-ketobutyrate CoA ligase and 7-keto-8-aminopelargonic acid synthase: cloning and overexpression of the gene from an extreme thermophile, Thermus thermophilus, and characterization of its gene product.
    Kubota T; Shimono J; Kanameda C; Izumi Y
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):3033-40. PubMed ID: 18071260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.