These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 31586145)
1. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence data structures. Singh P; Santoni S; Weber A; This P; Péros JP Sci Rep; 2019 Oct; 9(1):14294. PubMed ID: 31586145 [TBL] [Abstract][Full Text] [Related]
2. Growth period and variety together drive the succession of phyllosphere microbial communities of grapevine. Cui S; Zhou L; Fang Q; Xiao H; Jin D; Liu Y Sci Total Environ; 2024 Nov; 950():175334. PubMed ID: 39117232 [TBL] [Abstract][Full Text] [Related]
3. Genotype-Environment Interaction Shapes the Microbial Assemblage in Grapevine's Phyllosphere and Carposphere: An NGS Approach. Singh P; Santoni S; This P; Péros JP Microorganisms; 2018 Sep; 6(4):. PubMed ID: 30248973 [TBL] [Abstract][Full Text] [Related]
4. Variety features differentiate microbiota in the grape leaves. Zhang S; Wang Y; Chen X; Cui B; Bai Z; Zhuang G Can J Microbiol; 2020 Nov; 66(11):653-663. PubMed ID: 32511936 [TBL] [Abstract][Full Text] [Related]
5. Black fungi and associated bacterial communities in the phyllosphere of grapevine. Grube M; Schmid F; Berg G Fungal Biol; 2011 Oct; 115(10):978-86. PubMed ID: 21944210 [TBL] [Abstract][Full Text] [Related]
6. Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions. Oliveira M; Arenas M; Lage O; Cunha M; Amorim MI Lett Appl Microbiol; 2018 Jan; 66(1):93-102. PubMed ID: 29139139 [TBL] [Abstract][Full Text] [Related]
7. Genetic diversity of diazotrophs and total bacteria in the phyllosphere of Liang S; Liu H; Wu S; Xu S; Jin D; Faiola F; Zhuang X; Zhuang G; Qu D; Fan H; Bai Z Can J Microbiol; 2019 Sep; 65(9):642-652. PubMed ID: 31241350 [TBL] [Abstract][Full Text] [Related]
8. Distinct Phyllosphere Microbiome of Wild Tomato Species in Central Peru upon Dysbiosis. Runge P; Ventura F; Kemen E; Stam R Microb Ecol; 2023 Jan; 85(1):168-183. PubMed ID: 35041070 [TBL] [Abstract][Full Text] [Related]
9. Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Perazzolli M; Antonielli L; Storari M; Puopolo G; Pancher M; Giovannini O; Pindo M; Pertot I Appl Environ Microbiol; 2014 Jun; 80(12):3585-96. PubMed ID: 24682305 [TBL] [Abstract][Full Text] [Related]
10. Phyllosphere bacterial assemblage is affected by plant genotypes and growth stages. Li Y; Zhang Z; Liu W; Ke M; Qu Q; Zhou Z; Lu T; Qian H Microbiol Res; 2021 Jul; 248():126743. PubMed ID: 33713869 [TBL] [Abstract][Full Text] [Related]
11. Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. Massoni J; Bortfeld-Miller M; Jardillier L; Salazar G; Sunagawa S; Vorholt JA ISME J; 2020 Jan; 14(1):245-258. PubMed ID: 31624344 [TBL] [Abstract][Full Text] [Related]
12. Bacterial Succession and Community Dynamics of the Emerging Leaf Phyllosphere in Spring. Smets W; Spada LM; Gandolfi I; Wuyts K; Legein M; Muyshondt B; Samson R; Franzetti A; Lebeer S Microbiol Spectr; 2022 Apr; 10(2):e0242021. PubMed ID: 35234496 [TBL] [Abstract][Full Text] [Related]
13. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. Agler MT; Ruhe J; Kroll S; Morhenn C; Kim ST; Weigel D; Kemen EM PLoS Biol; 2016 Jan; 14(1):e1002352. PubMed ID: 26788878 [TBL] [Abstract][Full Text] [Related]
14. Host identity determines plant associated resistomes. Chen QL; Hu HW; Zhu D; Ding J; Yan ZZ; He JZ; Zhu YG Environ Pollut; 2020 Mar; 258():113709. PubMed ID: 31838394 [TBL] [Abstract][Full Text] [Related]
15. Adaptive matching between phyllosphere bacteria and their tree hosts in a neotropical forest. Lajoie G; Maglione R; Kembel SW Microbiome; 2020 May; 8(1):70. PubMed ID: 32438916 [TBL] [Abstract][Full Text] [Related]
16. Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. Thapa S; Ranjan K; Ramakrishnan B; Velmourougane K; Prasanna R J Basic Microbiol; 2018 Feb; 58(2):172-186. PubMed ID: 29193162 [TBL] [Abstract][Full Text] [Related]
17. Diversity and dynamics of microbial ecosystem on berry surface during the ripening of Ecolly (Vitis vinifera L.) grape in Wuhai, China. Ding Y; Wei R; Wang L; Yang C; Li H; Wang H World J Microbiol Biotechnol; 2021 Nov; 37(12):214. PubMed ID: 34746990 [TBL] [Abstract][Full Text] [Related]
18. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. Xu P; Fan X; Mao Y; Cheng H; Xu A; Lai W; Lv T; Hu Y; Nie Y; Zheng X; Meng Q; Wang Y; Cernava T; Wang M J Adv Res; 2022 Jul; 39():49-60. PubMed ID: 35777916 [TBL] [Abstract][Full Text] [Related]
19. The mature phyllosphere microbiome of grapevine is associated with resistance against Wicaksono WA; Morauf C; Müller H; Abdelfattah A; Donat C; Berg G Front Microbiol; 2023; 14():1149307. PubMed ID: 37113228 [TBL] [Abstract][Full Text] [Related]
20. Diversity of epiphytic fungi on the surface of Kyoho grape berries during ripening process in summer and winter at Nanning region, Guangxi, China. Ding S; Li N; Cao M; Huang Q; Chen G; Xie S; Zhang J; Cheng G; Li W Fungal Biol; 2019 Apr; 123(4):283-289. PubMed ID: 30928037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]