These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 31586296)

  • 21. Azole-based non-peptidomimetic plasmepsin inhibitors.
    Kinena L; Leitis G; Kanepe-Lapsa I; Bobrovs R; Jaudzems K; Ozola V; Suna E; Jirgensons A
    Arch Pharm (Weinheim); 2018 Sep; 351(9):e1800151. PubMed ID: 30063266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New inhibitors of the malaria aspartyl proteases plasmepsin I and II.
    Dahlgren A; Kvarnström I; Vrang L; Hamelink E; Hallberg A; Rosenquist A; Samuelsson B
    Bioorg Med Chem; 2003 Aug; 11(16):3423-37. PubMed ID: 12878137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Picomolar Inhibition of Plasmepsin V, an Essential Malaria Protease, Achieved Exploiting the Prime Region.
    Gambini L; Rizzi L; Pedretti A; Taglialatela-Scafati O; Carucci M; Pancotti A; Galli C; Read M; Giurisato E; Romeo S; Russo I
    PLoS One; 2015; 10(11):e0142509. PubMed ID: 26566224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Click Inspired Synthesis of Novel Cinchonidine Glycoconjugates as Promising Plasmepsin Inhibitors.
    Mishra N; Agrahari AK; Bose P; Singh SK; Singh AS; Tiwari VK
    Sci Rep; 2020 Feb; 10(1):3586. PubMed ID: 32108142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of small molecules through pharmacophore modeling, docking and molecular dynamics simulation against
    Saddala MS; Adi PJ
    Heliyon; 2018 May; 4(5):e00612. PubMed ID: 29756074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drug resistance in Plasmodium.
    Haldar K; Bhattacharjee S; Safeukui I
    Nat Rev Microbiol; 2018 Mar; 16(3):156-170. PubMed ID: 29355852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systematic analysis of atomic protein-ligand interactions in the PDB.
    Ferreira de Freitas R; Schapira M
    Medchemcomm; 2017 Oct; 8(10):1970-1981. PubMed ID: 29308120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infectious disease: Blocking malaria parasite invasion and egress.
    Crunkhorn S
    Nat Rev Drug Discov; 2018 Jan; 17(1):17. PubMed ID: 29242611
    [No Abstract]   [Full Text] [Related]  

  • 29. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress.
    Pino P; Caldelari R; Mukherjee B; Vahokoski J; Klages N; Maco B; Collins CR; Blackman MJ; Kursula I; Heussler V; Brochet M; Soldati-Favre D
    Science; 2017 Oct; 358(6362):522-528. PubMed ID: 29074775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion.
    Nasamu AS; Glushakova S; Russo I; Vaupel B; Oksman A; Kim AS; Fremont DH; Tolia N; Beck JR; Meyers MJ; Niles JC; Zimmerberg J; Goldberg DE
    Science; 2017 Oct; 358(6362):518-522. PubMed ID: 29074774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases.
    McGillewie L; Ramesh M; Soliman ME
    Protein J; 2017 Oct; 36(5):385-396. PubMed ID: 28762197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation.
    Deu E
    FEBS J; 2017 Aug; 284(16):2604-2628. PubMed ID: 28599096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.
    Daina A; Michielin O; Zoete V
    Sci Rep; 2017 Mar; 7():42717. PubMed ID: 28256516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Ab Initio Method for Designing Multi-Target Specific Pharmacophores using Complementary Interaction Field of Aspartic Proteases.
    Kaalia R; Kumar A; Srinivasan A; Ghosh I
    Mol Inform; 2015 Jun; 34(6-7):380-93. PubMed ID: 27490384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the Current State of Amber Force Field Modifications for DNA.
    Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Per-residue energy decomposition pharmacophore model to enhance virtual screening in drug discovery: a study for identification of reverse transcriptase inhibitors as potential anti-HIV agents.
    Cele FN; Ramesh M; Soliman ME
    Drug Des Devel Ther; 2016; 10():1365-77. PubMed ID: 27114700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Dynamics Simulations of Ligand-Induced Flap Conformational Changes in Cathepsin-D-A Comparative Study.
    Arodola OA; Soliman ME
    J Cell Biochem; 2016 Nov; 117(11):2643-57. PubMed ID: 27038253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods.
    Du X; Li Y; Xia YL; Ai SM; Liang J; Sang P; Ji XL; Liu SQ
    Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26821017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flap flexibility amongst plasmepsins I, II, III, IV, and V: Sequence, structural, and molecular dynamics analyses.
    McGillewie L; Soliman ME
    Proteins; 2015 Sep; 83(9):1693-705. PubMed ID: 26146842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Phyre2 web portal for protein modeling, prediction and analysis.
    Kelley LA; Mezulis S; Yates CM; Wass MN; Sternberg MJ
    Nat Protoc; 2015 Jun; 10(6):845-58. PubMed ID: 25950237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.