BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31586325)

  • 1. Pathways Enrichment Analysis of Gene Expression Data in Type 2 Diabetes.
    Ibrahim M
    Methods Mol Biol; 2020; 2076():119-128. PubMed ID: 31586325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Expression Mining in Type 2 Diabetes Research.
    Dunbar DR
    Methods Mol Biol; 2020; 2076():109-117. PubMed ID: 31586324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes.
    Shen J; Zhu B
    Mol Med Rep; 2018 Jun; 17(6):7636-7644. PubMed ID: 29620215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway and Network Analysis of Differentially Expressed Genes in Transcriptomes.
    Huang Q; Sun MA; Yan P
    Methods Mol Biol; 2018; 1751():35-55. PubMed ID: 29508288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes.
    Zelezniak A; Pers TH; Soares S; Patti ME; Patil KR
    PLoS Comput Biol; 2010 Apr; 6(4):e1000729. PubMed ID: 20369014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.
    Jambusaria A; Klomp J; Hong Z; Rafii S; Dai Y; Malik AB; Rehman J
    BMC Bioinformatics; 2018 Jun; 19(1):217. PubMed ID: 29940845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A network biology workflow to study transcriptomics data of the diabetic liver.
    Kutmon M; Evelo CT; Coort SL
    BMC Genomics; 2014 Nov; 15(1):971. PubMed ID: 25399255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual pathway explorer (viPEr) and pathway enrichment analysis tool (PEANuT): creating and analyzing focus networks to identify cross-talk between molecules and pathways.
    Garmhausen M; Hofmann F; Senderov V; Thomas M; Kandel BA; Habermann BH
    BMC Genomics; 2015 Oct; 16():790. PubMed ID: 26467653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Summarizing RNA-Seq Data or Differentially Expressed Genes Using Gene Set, Network, or Pathway Analysis.
    Calura E; Martini P
    Methods Mol Biol; 2021; 2284():147-179. PubMed ID: 33835442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergence and divergence of genetic and modular networks between diabetes and breast cancer.
    Zhang X; Zhang Y; Yu Y; Liu J; Yuan Y; Zhao Y; Li H; Wang J; Wang Z
    J Cell Mol Med; 2015 May; 19(5):1094-102. PubMed ID: 25752479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A MATLAB tool for pathway enrichment using a topology-based pathway regulation score.
    Ibrahim M; Jassim S; Cawthorne MA; Langlands K
    BMC Bioinformatics; 2014 Nov; 15(1):358. PubMed ID: 25367050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of core genes and pathways in type 2 diabetes mellitus by bioinformatics analysis.
    Ding L; Fan L; Xu X; Fu J; Xue Y
    Mol Med Rep; 2019 Sep; 20(3):2597-2608. PubMed ID: 31524257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path2enet: generation of human pathway-derived networks in an expression specific context.
    Droste C; De Las Rivas J
    BMC Genomics; 2016 Oct; 17(Suppl 8):731. PubMed ID: 27801297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap.
    Reimand J; Isserlin R; Voisin V; Kucera M; Tannus-Lopes C; Rostamianfar A; Wadi L; Meyer M; Wong J; Xu C; Merico D; Bader GD
    Nat Protoc; 2019 Feb; 14(2):482-517. PubMed ID: 30664679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription Factor-Binding Site Identification and Enrichment Analysis.
    Guy JL; Mor GG
    Methods Mol Biol; 2021; 2255():241-261. PubMed ID: 34033108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PAGED: a pathway and gene-set enrichment database to enable molecular phenotype discoveries.
    Huang H; Wu X; Sonachalam M; Mandape SN; Pandey R; MacDorman KF; Wan P; Chen JY
    BMC Bioinformatics; 2012; 13 Suppl 15(Suppl 15):S2. PubMed ID: 23046413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Drivers of Pancreatic Islet Function.
    Keller MP; Gatti DM; Schueler KL; Rabaglia ME; Stapleton DS; Simecek P; Vincent M; Allen S; Broman AT; Bacher R; Kendziorski C; Broman KW; Yandell BS; Churchill GA; Attie AD
    Genetics; 2018 May; 209(1):335-356. PubMed ID: 29567659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional Regulatory Network of GA Floral Induction Pathway in LA Hybrid Lily.
    Li W; Yong Y; Zhang Y; Lyu Y
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31159293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A common molecular signature of patients with sickle cell disease revealed by microarray meta-analysis and a genome-wide association study.
    Ben Hamda C; Sangeda R; Mwita L; Meintjes A; Nkya S; Panji S; Mulder N; Guizani-Tabbane L; Benkahla A; Makani J; Ghedira K;
    PLoS One; 2018; 13(7):e0199461. PubMed ID: 29979707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.