BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31586340)

  • 1. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae.
    Williams GM; Petrides AK; Balakrishnan L; Surtees JA
    Methods Mol Biol; 2020; 2056():25-68. PubMed ID: 31586340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae.
    Williams GM; Surtees JA
    Methods Mol Biol; 2018; 1672():439-470. PubMed ID: 29043641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.
    Williams GM; Surtees JA
    Genetics; 2015 Jul; 200(3):737-54. PubMed ID: 25969461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
    Yang J; Freudenreich CH
    Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.
    Concannon C; Lahue RS
    DNA Repair (Amst); 2014 Jan; 13():42-9. PubMed ID: 24359926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats.
    Bhattacharyya S; Lahue RS
    Mol Cell Biol; 2004 Sep; 24(17):7324-30. PubMed ID: 15314145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA elements important for CAG*CTG repeat thresholds in Saccharomyces cerevisiae.
    Dixon MJ; Lahue RS
    Nucleic Acids Res; 2004; 32(4):1289-97. PubMed ID: 14982954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae.
    Rolfsmeier ML; Dixon MJ; Pessoa-Brandão L; Pelletier R; Miret JJ; Lahue RS
    Genetics; 2001 Apr; 157(4):1569-79. PubMed ID: 11290713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases.
    Freudenreich CH; Lahiri M
    Cell Cycle; 2004 Nov; 3(11):1370-4. PubMed ID: 15483399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
    Daee DL; Mertz T; Lahue RS
    Mol Cell Biol; 2007 Jan; 27(1):102-10. PubMed ID: 17060452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae.
    Collins NS; Bhattacharyya S; Lahue RS
    DNA Repair (Amst); 2007 Jan; 6(1):38-44. PubMed ID: 16979389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.
    Liu Y; Zhang H; Veeraraghavan J; Bambara RA; Freudenreich CH
    Mol Cell Biol; 2004 May; 24(9):4049-64. PubMed ID: 15082797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.
    Ye Y; Kirkham-McCarthy L; Lahue RS
    DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12438-43. PubMed ID: 9770504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions.
    Kantartzis A; Williams GM; Balakrishnan L; Roberts RL; Surtees JA; Bambara RA
    Cell Rep; 2012 Aug; 2(2):216-22. PubMed ID: 22938864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Mol Cell Biol; 1997 Jun; 17(6):3382-7. PubMed ID: 9154837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human FEN-1 can process the 5'-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner.
    Lee S; Park MS
    Exp Mol Med; 2002 Sep; 34(4):313-7. PubMed ID: 12515398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Trinucleotide Repeat Stability by Integration at a Chromosomal Ectopic Site.
    Gadgil RY; Rider SD; Lewis T; Barthelemy J; Leffak M
    Methods Mol Biol; 2020; 2056():121-136. PubMed ID: 31586345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability.
    Khristich AN; Armenia JF; Matera RM; Kolchinski AA; Mirkin SM
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1628-1637. PubMed ID: 31911468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.