These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31586340)

  • 1. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae.
    Williams GM; Petrides AK; Balakrishnan L; Surtees JA
    Methods Mol Biol; 2020; 2056():25-68. PubMed ID: 31586340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae.
    Williams GM; Surtees JA
    Methods Mol Biol; 2018; 1672():439-470. PubMed ID: 29043641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo.
    Williams GM; Surtees JA
    Genetics; 2015 Jul; 200(3):737-54. PubMed ID: 25969461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
    Yang J; Freudenreich CH
    Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions.
    Concannon C; Lahue RS
    DNA Repair (Amst); 2014 Jan; 13():42-9. PubMed ID: 24359926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats.
    Bhattacharyya S; Lahue RS
    Mol Cell Biol; 2004 Sep; 24(17):7324-30. PubMed ID: 15314145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA elements important for CAG*CTG repeat thresholds in Saccharomyces cerevisiae.
    Dixon MJ; Lahue RS
    Nucleic Acids Res; 2004; 32(4):1289-97. PubMed ID: 14982954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae.
    Rolfsmeier ML; Dixon MJ; Pessoa-Brandão L; Pelletier R; Miret JJ; Lahue RS
    Genetics; 2001 Apr; 157(4):1569-79. PubMed ID: 11290713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases.
    Freudenreich CH; Lahiri M
    Cell Cycle; 2004 Nov; 3(11):1370-4. PubMed ID: 15483399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae.
    Daee DL; Mertz T; Lahue RS
    Mol Cell Biol; 2007 Jan; 27(1):102-10. PubMed ID: 17060452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae.
    Collins NS; Bhattacharyya S; Lahue RS
    DNA Repair (Amst); 2007 Jan; 6(1):38-44. PubMed ID: 16979389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.
    Liu Y; Zhang H; Veeraraghavan J; Bambara RA; Freudenreich CH
    Mol Cell Biol; 2004 May; 24(9):4049-64. PubMed ID: 15082797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.
    Ye Y; Kirkham-McCarthy L; Lahue RS
    DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12438-43. PubMed ID: 9770504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions.
    Kantartzis A; Williams GM; Balakrishnan L; Roberts RL; Surtees JA; Bambara RA
    Cell Rep; 2012 Aug; 2(2):216-22. PubMed ID: 22938864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Mol Cell Biol; 1997 Jun; 17(6):3382-7. PubMed ID: 9154837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human FEN-1 can process the 5'-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner.
    Lee S; Park MS
    Exp Mol Med; 2002 Sep; 34(4):313-7. PubMed ID: 12515398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Trinucleotide Repeat Stability by Integration at a Chromosomal Ectopic Site.
    Gadgil RY; Rider SD; Lewis T; Barthelemy J; Leffak M
    Methods Mol Biol; 2020; 2056():121-136. PubMed ID: 31586345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability.
    Khristich AN; Armenia JF; Matera RM; Kolchinski AA; Mirkin SM
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1628-1637. PubMed ID: 31911468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.