These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 31586340)
1. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae. Williams GM; Petrides AK; Balakrishnan L; Surtees JA Methods Mol Biol; 2020; 2056():25-68. PubMed ID: 31586340 [TBL] [Abstract][Full Text] [Related]
2. Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae. Williams GM; Surtees JA Methods Mol Biol; 2018; 1672():439-470. PubMed ID: 29043641 [TBL] [Abstract][Full Text] [Related]
3. MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo. Williams GM; Surtees JA Genetics; 2015 Jul; 200(3):737-54. PubMed ID: 25969461 [TBL] [Abstract][Full Text] [Related]
4. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner. Yang J; Freudenreich CH Gene; 2007 May; 393(1-2):110-5. PubMed ID: 17383831 [TBL] [Abstract][Full Text] [Related]
5. Nucleotide excision repair and the 26S proteasome function together to promote trinucleotide repeat expansions. Concannon C; Lahue RS DNA Repair (Amst); 2014 Jan; 13():42-9. PubMed ID: 24359926 [TBL] [Abstract][Full Text] [Related]
9. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Freudenreich CH; Lahiri M Cell Cycle; 2004 Nov; 3(11):1370-4. PubMed ID: 15483399 [TBL] [Abstract][Full Text] [Related]
10. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900 [TBL] [Abstract][Full Text] [Related]
14. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination. Ye Y; Kirkham-McCarthy L; Lahue RS DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583 [TBL] [Abstract][Full Text] [Related]
15. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Miret JJ; Pessoa-Brandão L; Lahue RS Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12438-43. PubMed ID: 9770504 [TBL] [Abstract][Full Text] [Related]
16. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions. Kantartzis A; Williams GM; Balakrishnan L; Roberts RL; Surtees JA; Bambara RA Cell Rep; 2012 Aug; 2(2):216-22. PubMed ID: 22938864 [TBL] [Abstract][Full Text] [Related]
17. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae. Miret JJ; Pessoa-Brandão L; Lahue RS Mol Cell Biol; 1997 Jun; 17(6):3382-7. PubMed ID: 9154837 [TBL] [Abstract][Full Text] [Related]
18. Human FEN-1 can process the 5'-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner. Lee S; Park MS Exp Mol Med; 2002 Sep; 34(4):313-7. PubMed ID: 12515398 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Trinucleotide Repeat Stability by Integration at a Chromosomal Ectopic Site. Gadgil RY; Rider SD; Lewis T; Barthelemy J; Leffak M Methods Mol Biol; 2020; 2056():121-136. PubMed ID: 31586345 [TBL] [Abstract][Full Text] [Related]
20. Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability. Khristich AN; Armenia JF; Matera RM; Kolchinski AA; Mirkin SM Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1628-1637. PubMed ID: 31911468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]