BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31586549)

  • 1. Measurement of grouped intracellular solute osmotic virial coefficients.
    Zielinski MW; McGann LE; Nychka JA; Elliott JAW
    Cryobiology; 2020 Dec; 97():198-216. PubMed ID: 31586549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of non-ideal solution theories for multi-solute solutions in cryobiology and tabulation of required coefficients.
    Zielinski MW; McGann LE; Nychka JA; Elliott JA
    Cryobiology; 2014 Oct; 69(2):305-17. PubMed ID: 25158101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonideal Solute Chemical Potential Equation and the Validity of the Grouped Solute Approach for Intracellular Solution Thermodynamics.
    Zielinski MW; McGann LE; Nychka JA; Elliott JAW
    J Phys Chem B; 2017 Nov; 121(46):10443-10456. PubMed ID: 29115839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the osmotic virial equation in cryobiology.
    Prickett RC; Elliott JA; McGann LE
    Cryobiology; 2010 Feb; 60(1):30-42. PubMed ID: 19665010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comment on "Determination of the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system and a comparison between two theoretical methods for synthetic phase diagrams" Cryobiology 61 (2010) 52-57.
    Zielinski MW; McGann LE; Nychka JA; Elliott JA
    Cryobiology; 2015 Jun; 70(3):287-92. PubMed ID: 25818605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Dependence of Membrane Permeability Parameters for Five Cell Types Using Nonideal Thermodynamic Assumptions to Mathematically Model Cryopreservation Protocols.
    Yadegari F; Gabler Pizarro LA; Marquez-Curtis LA; Elliott JAW
    J Phys Chem B; 2024 Feb; 128(5):1139-1160. PubMed ID: 38291962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic virial coefficients of hydroxyethyl starch from aqueous hydroxyethyl starch-sodium chloride vapor pressure osmometry.
    Cheng J; Gier M; Ross-Rodriguez LU; Prasad V; Elliott JA; Sputtek A
    J Phys Chem B; 2013 Sep; 117(35):10231-40. PubMed ID: 23862979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-Based Description of the Osmotic Second Virial Coefficients of Electrolytes: Rigorous Formal Links to Solute-Solvent Interaction Asymmetry, Virial Expansion Paths, and Experimental Evidence.
    Chialvo AA
    J Phys Chem B; 2022 Jun; ():. PubMed ID: 35671130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeability and Osmotic Parameters of Human Umbilical Vein Endothelial Cells and H9C2 Cells under Non-ideal Thermodynamic Assumptions: A Novel Iterative Fitting Method.
    Gabler Pizarro LA; McGann LE; Elliott JAW
    J Phys Chem B; 2021 Dec; 125(47):12934-12946. PubMed ID: 34788536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting freezing points of ternary salt solutions with the multisolute osmotic virial equation.
    Binyaminov H; Sun H; Elliott JAW
    J Chem Phys; 2023 Dec; 159(24):. PubMed ID: 38146834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-ideal solution thermodynamics of cytoplasm.
    Ross-Rodriguez LU; Elliott JA; McGann LE
    Biopreserv Biobank; 2012 Oct; 10(5):462-71. PubMed ID: 23840923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the behavior of the osmotic second virial coefficients of gases in aqueous solutions: Rigorous results, accurate approximations, and experimental evidence.
    Chialvo AA; Crisalle OD
    J Chem Phys; 2019 Mar; 150(12):124503. PubMed ID: 30927890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multisolute osmotic virial equation for solutions of interest in biology.
    Elliott JA; Prickett RC; Elmoazzen HY; Porter KR; McGann LE
    J Phys Chem B; 2007 Feb; 111(7):1775-85. PubMed ID: 17266364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.
    McBride DW; Rodgers VG
    Biophys Chem; 2013 Dec; 184():79-86. PubMed ID: 24141326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. McMillan-Mayer theory of solutions revisited: simplifications and extensions.
    Vafaei S; Tomberli B; Gray CG
    J Chem Phys; 2014 Oct; 141(15):154501. PubMed ID: 25338903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the Osmotic Virial Equation with the Margules Activity Model for Solid-Liquid Equilibrium.
    Zargarzadeh L; Elliott JAW
    J Phys Chem B; 2019 Feb; 123(5):1099-1107. PubMed ID: 30672277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic studies of molecular interactions in aqueous alpha-cyclodextrin solutions: application of McMillan-Mayer and Kirkwood-Buff theories.
    Terdale SS; Dagade DH; Patil KJ
    J Phys Chem B; 2006 Sep; 110(37):18583-93. PubMed ID: 16970487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicomponent solutions: Combining rules for multisolute osmotic virial coefficients.
    Binyaminov H; Elliott JAW
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37905682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deriving Second Osmotic Virial Coefficients from Equations of State and from Experiment.
    Koga K; Holten V; Widom B
    J Phys Chem B; 2015 Oct; 119(42):13391-7. PubMed ID: 26378689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmotic Second Virial Coefficients of Aqueous Solutions from Two-Component Equations of State.
    CerdeiriƱa CA; Widom B
    J Phys Chem B; 2016 Dec; 120(51):13144-13151. PubMed ID: 27982603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.