These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31586921)
1. Effect of microbial nutrients supply on coal bio-desulfurization. Liu F; Lei Y; Shi J; Zhou L; Wu Z; Dong Y; Bi W J Hazard Mater; 2020 Feb; 384():121324. PubMed ID: 31586921 [TBL] [Abstract][Full Text] [Related]
2. Early reprecipitation of sulfate salts in coal biodesulfurization processes using acidophilic chemolithotrophic bacteria. Duarte Briceño PG; Caicedo Pineda GA; Márquez Godoy MA World J Microbiol Biotechnol; 2020 May; 36(6):81. PubMed ID: 32448917 [TBL] [Abstract][Full Text] [Related]
3. The microbial desulfurization of coal. Rossi G Adv Biochem Eng Biotechnol; 2014; 142():147-67. PubMed ID: 23576051 [TBL] [Abstract][Full Text] [Related]
4. [Difference in acclimation of Acidithiobacillus ferrooxidans by various substrates and its effect on coal desulfurization efficiency]. Zhang DW; Zhou LX; Yang XP; Wang SM Huan Jing Ke Xue; 2011 Jan; 32(1):272-6. PubMed ID: 21404698 [TBL] [Abstract][Full Text] [Related]
5. Comparison analysis of coal biodesulfurization and coal's pyrite bioleaching with Acidithiobacillus ferrooxidans. Hong FF; He H; Liu JY; Tao XX; Zheng L; Zhao YD ScientificWorldJournal; 2013; 2013():184964. PubMed ID: 24288464 [TBL] [Abstract][Full Text] [Related]
6. Microbial desulfurization of different coals. Acharya C; Kar RN; Sukla LB Appl Biochem Biotechnol; 2004; 118(1-3):47-63. PubMed ID: 15304738 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions. Jones FS; Bigham JM; Gramp JP; Tuovinen OH Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720 [TBL] [Abstract][Full Text] [Related]
8. A dynamic mathematical model for microbial removal of pyritic sulfur from coal. Kargi F; Weissman JG Biotechnol Bioeng; 1984 Jun; 26(6):604-12. PubMed ID: 18553377 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of Acidithiobacillus ferrooxidans YY2 and its application in the biodesulfurization of coal. Yang X; Wang S; Liu Y; Zhang Y Can J Microbiol; 2015 Jan; 61(1):65-71. PubMed ID: 25496139 [TBL] [Abstract][Full Text] [Related]
10. Effect of biogenic jarosite on the bio-immobilization of toxic elements from sulfide tailings. Piervandi Z; Khodadadi Darban A; Mousavi SM; Abdollahy M; Asadollahfardi G; Funari V; Dinelli E; Webster RD; Sillanpää M Chemosphere; 2020 Nov; 258():127288. PubMed ID: 32947659 [TBL] [Abstract][Full Text] [Related]
11. Biodesulphurization of coal: mechanism and rate limiting factors. Malik A; Dastidar MG; Roychoudhury PK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(6):1113-28. PubMed ID: 11501309 [TBL] [Abstract][Full Text] [Related]
12. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. Lee EY; Lee NY; Cho KS; Ryu HW J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938 [TBL] [Abstract][Full Text] [Related]
13. Biological removal of pyritic sulfur from coal by the thermophilic organism Sulfolobus acidocaldarius. Kargi F; Robinson JM Biotechnol Bioeng; 1985 Jan; 27(1):41-9. PubMed ID: 18553575 [TBL] [Abstract][Full Text] [Related]
14. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407 [TBL] [Abstract][Full Text] [Related]
15. Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans. Hou Q; Fang D; Liang J; Zhou L PLoS One; 2015; 10(3):e0120966. PubMed ID: 25807372 [TBL] [Abstract][Full Text] [Related]
16. Microbial Desulfurization of Coals in a Slurry Pipeline Reactor Using. Thiobacillus ferrooxidans. Rai C Biotechnol Prog; 1985 Sep; 1(3):200-4. PubMed ID: 20568162 [TBL] [Abstract][Full Text] [Related]
17. L-cysteine addition enhances microbial surface oxidation of coal inorganic sulfur: Complexation of cysteine and pyrite, inhibition of jarosite formation, environmental effects. Ye J; Wang S; Zhang P; Nabi M; Tao X; Zhang H; Liu Y Environ Res; 2020 Aug; 187():109705. PubMed ID: 32474315 [TBL] [Abstract][Full Text] [Related]
18. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching. Feng S; Yang H; Wang W Bioresour Technol; 2015 Sep; 191():37-44. PubMed ID: 25978855 [TBL] [Abstract][Full Text] [Related]
19. [Microbial desulfuration of coal. I. Isolation and identification of iron- and sulfur-oxidizing bacteria]. Ruiz-Alares MC; Iñigo B; Gómez-Arandas ; Gavilán JM Microbiol Esp; 1979-1980; 32-33():65-74. PubMed ID: 400534 [No Abstract] [Full Text] [Related]
20. Microbial treatment of sulfur-contaminated industrial wastes. Gómez-Ramírez M; Zarco-Tovar K; Aburto J; de León RG; Rojas-Avelizapa NG J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(2):228-32. PubMed ID: 24171423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]