These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31587034)

  • 1. Powder Intrinsic Properties as Dustiness Predictor for an Efficient Exposure Assessment?
    Shandilya N; Kuijpers E; Tuinman I; Fransman W
    Ann Work Expo Health; 2019 Nov; 63(9):1029-1045. PubMed ID: 31587034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dustiness of fine and nanoscale powders.
    Evans DE; Turkevich LA; Roettgers CT; Deye GJ; Baron PA
    Ann Occup Hyg; 2013 Mar; 57(2):261-77. PubMed ID: 23065675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel device for measuring respirable dustiness using low-mass powder samples.
    O'Shaughnessy PT; Kang M; Ellickson D
    J Occup Environ Hyg; 2012; 9(3):129-39. PubMed ID: 22335240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of dust generation by free falling powders.
    Heitbrink WA; Baron PA; Willeke K
    Am Ind Hyg Assoc J; 1992 Oct; 53(10):617-24. PubMed ID: 1456205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure assessment of four pharmaceutical powders based on dustiness and evaluation of damaged HEPA filters.
    Levin M; Koponen IK; Jensen KA
    J Occup Environ Hyg; 2014; 11(3):165-77. PubMed ID: 24521066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Relationship between Exposure to Particles and Dustiness during Handling of Powders in Industrial Settings.
    Ribalta C; Viana M; López-Lilao A; Estupiñá S; Minguillón MC; Mendoza J; Díaz J; Dahmann D; Monfort E
    Ann Work Expo Health; 2019 Jan; 63(1):107-123. PubMed ID: 30508067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of handling energy factors for use of dustiness data in exposure assessment modelling.
    Fonseca AS; Ribalta C; Shandilya N; Fransman W; Alstrup Jensen K
    Ann Work Expo Health; 2024 Mar; 68(3):295-311. PubMed ID: 38401569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method to evaluate the dustiness of pharmaceutical powders.
    Boundy M; Leith D; Polton T
    Ann Occup Hyg; 2006 Jul; 50(5):453-8. PubMed ID: 16484334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size selective dustiness and exposure; simulated workplace comparisons.
    Brouwer DH; Links IH; De Vreede SA; Christopher Y
    Ann Occup Hyg; 2006 Jul; 50(5):445-52. PubMed ID: 16524926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (CELLULOSEINS).
    Morgan DL
    Toxic Rep Ser; 2006 Aug; (74):1-62, A1-C2. PubMed ID: 17160106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum.
    Schneider T; Jensen KA
    Ann Occup Hyg; 2008 Jan; 52(1):23-34. PubMed ID: 18056087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of established systems for measuring the dustiness of powders with the UNC Dustiness Tester developed especially for pharmaceutical substances.
    Bach S; Eickmann U; Schmidt E
    Ann Occup Hyg; 2013 Oct; 57(8):1078-86. PubMed ID: 23749502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of dustiness tests to the prediction of worker dust exposure.
    Heitbrink WA; Todd WF; Cooper TC; O'Brien DM
    Am Ind Hyg Assoc J; 1990 Apr; 51(4):217-23. PubMed ID: 2327332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting the Heubach and MRI dustiness tests.
    Heitbrink WA
    Am Ind Hyg Assoc J; 1990 Apr; 51(4):210-6. PubMed ID: 2327331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the hazard characteristics of powder byproducts generated from semiconductor fabrication processes.
    Choi KM; An HC; Kim KS
    J Occup Environ Hyg; 2015; 12(2):114-22. PubMed ID: 25192369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a surface metric to measure the dustiness of nanomaterial powders.
    Dazon C; Bau S; Payet R; Fierro V; Witschger O
    Environ Sci Process Impacts; 2023 Mar; 25(3):670-679. PubMed ID: 36806437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial dustiness and particle release of different biofuels.
    Madsen AM; Martensson L; Schneider T; Larsson L
    Ann Occup Hyg; 2004 Jun; 48(4):327-38. PubMed ID: 15191942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of the dustiness of industrial minerals according to European standard EN 15051, 2006.
    Pensis I; Mareels J; Dahmann D; Mark D
    Ann Occup Hyg; 2010 Mar; 54(2):204-16. PubMed ID: 19955327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Airborne Particulates and Worker Exposures in Electro-static Powder Coating Operations.
    Lee CW; Chung SH; Hsu YT; Chang HB; Chien YC
    Ann Work Expo Health; 2021 Nov; 65(9):1075-1084. PubMed ID: 34219137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements.
    Yamada M; Takaya M; Ogura I
    Ind Health; 2015; 53(6):511-6. PubMed ID: 26320727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.