These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31587034)

  • 21. Characterization of Hairdresser Exposure to Airborne Particles during Hair Bleaching.
    Nilsson PT; Marini S; Wierzbicka A; Kåredal M; Blomgren E; Nielsen J; Buonanno G; Gudmundsson A
    Ann Occup Hyg; 2016 Jan; 60(1):90-100. PubMed ID: 26371279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Particle size distribution: A key factor in estimating powder dustiness.
    López Lilao A; Sanfélix Forner V; Mallol Gasch G; Monfort Gimeno E
    J Occup Environ Hyg; 2017 Dec; 14(12):975-985. PubMed ID: 28763288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A System to Create Stable Nanoparticle Aerosols from Nanopowders.
    Ding Y; Riediker M
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quartz dustiness: A key factor in controlling exposure to crystalline silica in the workplace.
    López-Lilao A; Escrig A; Orts MJ; Mallol G; Monfort E
    J Occup Environ Hyg; 2016 Nov; 13(11):817-28. PubMed ID: 27135749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of the dustiness index in combination with the handling energy factor for exposure modelling of nanomaterials.
    Ribalta C; Jensen ACØ; Shandilya N; Delpivo C; Jensen KA; Fonseca AS
    NanoImpact; 2024 Jan; 33():100493. PubMed ID: 38219948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sampling Efficiency and Performance of Selected Thoracic Aerosol Samplers.
    Görner P; Simon X; Boivin A; Bau S
    Ann Work Expo Health; 2017 Aug; 61(7):784-796. PubMed ID: 28810686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the Dustiness of Different Kaolin Samples.
    López-Lilao A; Bruzi M; Sanfélix V; Gozalbo A; Mallol G; Monfort E
    J Occup Environ Hyg; 2015; 12(8):547-54. PubMed ID: 25807202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders.
    Zhou QT; Armstrong B; Larson I; Stewart PJ; Morton DA
    Eur J Pharm Sci; 2010 Aug; 40(5):412-21. PubMed ID: 20433919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dustiness testing of materials handled at workplaces.
    Lidén G
    Ann Occup Hyg; 2006 Jul; 50(5):437-9. PubMed ID: 16849593
    [No Abstract]   [Full Text] [Related]  

  • 31. Surface area of respirable beryllium metal, oxide, and copper alloy aerosols and implications for assessment of exposure risk of chronic beryllium disease.
    Stefaniak AB; Hoover MD; Dickerson RM; Peterson EJ; Day GA; Breysse PN; Kent MS; Scripsick RC
    AIHA J (Fairfax, Va); 2003; 64(3):297-305. PubMed ID: 12809534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.
    Thorpe A; Walsh PT
    Ann Occup Hyg; 2013 Aug; 57(7):824-41. PubMed ID: 23704135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of High Flow Rate Personal Respirable Samplers When Challenged with Mineral Aerosols of Different Particle Size Distributions.
    Stacey P; Thorpe A; Echt A
    Ann Occup Hyg; 2016 May; 60(4):479-92. PubMed ID: 26865560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exposure assessment of nanotitanium oxide powder handling using real-time size-selective particle number concentration measurements and X-ray fluorescence spectrometry -The possibility of exposure to nonagglomerated nanomaterials during the handling of nanomaterial fine powders.
    Takaya M; Yamada M; Kobayashi K; Higashikubo I; Hagiwara M; Ono-Ogasawara M
    Ind Health; 2022 Jun; 60(3):253-265. PubMed ID: 34803120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance of high flow rate samplers for respirable particle collection.
    Lee T; Kim SW; Chisholm WP; Slaven J; Harper M
    Ann Occup Hyg; 2010 Aug; 54(6):697-709. PubMed ID: 20660144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. What is "powder free"? Characterisation of powder aerosol produced during simulated use of powdered and powder free latex gloves.
    Phillips ML; Meagher CC; Johnson DL
    Occup Environ Med; 2001 Jul; 58(7):479-81. PubMed ID: 11404454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of dusts encountered during the production of cemented tungsten carbides.
    Stefaniak AB; Day GA; Harvey CJ; Leonard SS; Schwegler-Berry DE; Chipera SJ; Sahakian NM; Chisholm WP
    Ind Health; 2007 Dec; 45(6):793-803. PubMed ID: 18212475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.
    Dahlman-Höglund A; Lindgren Å; Mattsby-Baltzer I
    Ann Occup Hyg; 2016 Aug; 60(7):836-44. PubMed ID: 27268595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Personal exposure to airborne dust and microorganisms in agricultural environments.
    Lee SA; Adhikari A; Grinshpun SA; McKay R; Shukla R; Reponen T
    J Occup Environ Hyg; 2006 Mar; 3(3):118-30. PubMed ID: 16484176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmaceutical dust exposure at pharmacies using automatic dispensing machines: a preliminary study.
    Fent KW; Durgam S; Mueller C
    J Occup Environ Hyg; 2014; 11(11):695-705. PubMed ID: 24824046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.