These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31587034)

  • 41. Relationships between Personal Measurements of 'Total' Dust, Respirable, Thoracic, and Inhalable Aerosol Fractions in the Cement Production Industry.
    Notø HP; Nordby KC; Eduard W
    Ann Occup Hyg; 2016 May; 60(4):453-66. PubMed ID: 26755796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Establishment of powder dustiness evaluation method by dustmeter with small amount of pharmaceutical ingredients.
    Ohta T; Maeda H; Kubota R; Koga A; Terada K
    Int J Pharm; 2014 Sep; 472(1-2):251-6. PubMed ID: 24907599
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comment on comparison of powder dustiness methods.
    Evans DE; Turkevich LA; Roettgers CT; Deye GJ
    Ann Occup Hyg; 2014 May; 58(4):524-8. PubMed ID: 24477891
    [No Abstract]   [Full Text] [Related]  

  • 44. Characterization of an aerosol chamber for human exposures to endotoxin.
    Taylor L; Reist PC; Boehlecke BA; Jacobs RR
    Appl Occup Environ Hyg; 2000 Mar; 15(3):303-12. PubMed ID: 10701293
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advanced REACH Tool: development and application of the substance emission potential modifying factor.
    van Tongeren M; Fransman W; Spankie S; Tischer M; Brouwer D; Schinkel J; Cherrie JW; Tielemans E
    Ann Occup Hyg; 2011 Nov; 55(9):980-8. PubMed ID: 22080162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods.
    Shirdel M; Andersson BM; Bergdahl IA; Sommar JN; Wingfors H; Liljelind IE
    Ann Work Expo Health; 2018 Mar; 62(3):328-338. PubMed ID: 29300818
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Numerical Investigation of Aerosolization in the Venturi Dustiness Tester: Aerodynamics of a Particle on a Hill.
    Palakurthi NK; Ghia U; Turkevich LA
    J Fluids Eng; 2022 Jun; 144(6):. PubMed ID: 35673360
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Occupational exposure to lead--granulometric distribution of airborne lead in relation to risk assessment.
    Carelli G; Masci O; Altieri A; Castellino N
    Ind Health; 1999 Jul; 37(3):313-21. PubMed ID: 10441903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inflammatory markers and exposure to occupational air pollutants.
    Ohlson CG; Berg P; Bryngelsson IL; Elihn K; Ngo Y; Westberg H; Sjögren B
    Inhal Toxicol; 2010 Nov; 22(13):1083-90. PubMed ID: 21029032
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Correction of sampler-to-sampler comparisons based on aerosol size distribution.
    O'Shaughnessy PT; Lo J; Golla V; Nakatsu J; Tillery MI; Reynolds S
    J Occup Environ Hyg; 2007 Apr; 4(4):237-45. PubMed ID: 17365494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational Fluid Dynamics Analysis of the Venturi Dustiness Tester.
    Dubey P; Ghia U; Turkevich LA
    Powder Technol; 2017 May; 312():310-320. PubMed ID: 28638167
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diacetyl emissions and airborne dust from butter flavorings used in microwave popcorn production.
    Boylstein R; Piacitelli C; Grote A; Kanwal R; Kullman G; Kreiss K
    J Occup Environ Hyg; 2006 Oct; 3(10):530-5. PubMed ID: 16998985
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A laboratory study of the performance of the handheld diffusion size classifier (DiSCmini) for various aerosols in the 15-400 nm range.
    Bau S; Zimmermann B; Payet R; Witschger O
    Environ Sci Process Impacts; 2015 Feb; 17(2):261-9. PubMed ID: 25366997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Passive personal air sampling of dust in a working environment-A pilot study.
    Shirdel M; Bergdahl IA; Andersson BM; Wingfors H; Sommar JN; Liljelind IE
    J Occup Environ Hyg; 2019 Oct; 16(10):675-684. PubMed ID: 31442106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance evaluation of disposable inhalable aerosol sampler at a copper electrorefinery.
    Lee EG; Grimson PJ; Chisholm WP; Kashon ML; He X; L'Orange C; Volckens J
    J Occup Environ Hyg; 2019 Mar; 16(3):250-257. PubMed ID: 30640589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-Time Emission and Exposure Measurements of Multi-walled Carbon Nanotubes during Production, Power Sawing, and Testing of Epoxy-Based Nanocomposites.
    Hedmer M; Lovén K; Martinsson J; Messing ME; Gudmundsson A; Pagels J
    Ann Work Expo Health; 2022 Aug; 66(7):878-894. PubMed ID: 35297480
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy.
    Azzougagh MN; Keller FX; Cabrol E; Cici M; Pourchez J
    J Occup Environ Hyg; 2021 Jun; 18(6):223-236. PubMed ID: 33989129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of airborne particles from cleaning sprays and their corresponding respiratory deposition fractions.
    Lovén K; Isaxon C; Wierzbicka A; Gudmundsson A
    J Occup Environ Hyg; 2019 Sep; 16(9):656-667. PubMed ID: 31361572
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calibration of high flow rate thoracic-size selective samplers.
    Lee T; Thorpe A; Cauda E; Harper M
    J Occup Environ Hyg; 2016; 13(6):D93-8. PubMed ID: 26891196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.