These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 31587072)
1. QTLs for constitutive aerenchyma from Zea nicaraguensis improve tolerance of maize to root-zone oxygen deficiency. Gong F; Takahashi H; Omori F; Wang W; Mano Y; Nakazono M J Exp Bot; 2019 Nov; 70(21):6475-6487. PubMed ID: 31587072 [TBL] [Abstract][Full Text] [Related]
2. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Mano Y; Omori F Ann Bot; 2013 Oct; 112(6):1125-39. PubMed ID: 23877074 [TBL] [Abstract][Full Text] [Related]
3. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697 [TBL] [Abstract][Full Text] [Related]
4. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. Watanabe K; Takahashi H; Sato S; Nishiuchi S; Omori F; Malik AI; Colmer TD; Mano Y; Nakazono M Plant Cell Environ; 2017 Feb; 40(2):304-316. PubMed ID: 27762444 [TBL] [Abstract][Full Text] [Related]
5. Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize. Pedersen O; Nakayama Y; Yasue H; Kurokawa Y; Takahashi H; Heidi Floytrup A; Omori F; Mano Y; David Colmer T; Nakazono M New Phytol; 2021 Jan; 229(1):94-105. PubMed ID: 31990995 [TBL] [Abstract][Full Text] [Related]
6. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Qiu F; Zheng Y; Zhang Z; Xu S Ann Bot; 2007 Jun; 99(6):1067-81. PubMed ID: 17470902 [TBL] [Abstract][Full Text] [Related]
7. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. Zaidi PH; Rashid Z; Vinayan MT; Almeida GD; Phagna RK; Babu R PLoS One; 2015; 10(4):e0124350. PubMed ID: 25884393 [TBL] [Abstract][Full Text] [Related]
8. Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of Ning J; Yamauchi T; Takahashi H; Omori F; Mano Y; Nakazono M Front Plant Sci; 2023; 14():1133009. PubMed ID: 37152158 [TBL] [Abstract][Full Text] [Related]
9. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Takahashi H; Yamauchi T; Rajhi I; Nishizawa NK; Nakazono M Ann Bot; 2015 May; 115(6):879-94. PubMed ID: 25858325 [TBL] [Abstract][Full Text] [Related]
10. QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Ruta N; Liedgens M; Fracheboud Y; Stamp P; Hund A Theor Appl Genet; 2010 Feb; 120(3):621-31. PubMed ID: 19847387 [TBL] [Abstract][Full Text] [Related]
11. Genetic regulation of root traits for soil flooding tolerance in genus Mano Y; Nakazono M Breed Sci; 2021 Feb; 71(1):30-39. PubMed ID: 33762874 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.). Xie Y; Feng Y; Chen Q; Zhao F; Zhou S; Ding Y; Song X; Li P; Wang B Genes Genomics; 2019 Oct; 41(10):1135-1145. PubMed ID: 31243730 [TBL] [Abstract][Full Text] [Related]
13. Root Cortex Provides a Venue for Gas-Space Formation and Is Essential for Plant Adaptation to Waterlogging. Yamauchi T; Abe F; Tsutsumi N; Nakazono M Front Plant Sci; 2019; 10():259. PubMed ID: 31024577 [TBL] [Abstract][Full Text] [Related]
14. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Tuberosa R; Sanguineti MC; Landi P; Giuliani MM; Salvi S; Conti S Plant Mol Biol; 2002; 48(5-6):697-712. PubMed ID: 11999844 [TBL] [Abstract][Full Text] [Related]
16. The Quantitative Genetic Control of Root Architecture in Maize. Bray AL; Topp CN Plant Cell Physiol; 2018 Oct; 59(10):1919-1930. PubMed ID: 30020530 [TBL] [Abstract][Full Text] [Related]
17. Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Zhu J; Mickelson SM; Kaeppler SM; Lynch JP Theor Appl Genet; 2006 Jun; 113(1):1-10. PubMed ID: 16783587 [TBL] [Abstract][Full Text] [Related]
18. Lateral root development in the maize (Zea mays) lateral rootless1 mutant. Husakova E; Hochholdinger F; Soukup A Ann Bot; 2013 Jul; 112(2):417-28. PubMed ID: 23456690 [TBL] [Abstract][Full Text] [Related]
19. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. Zou X; Jiang Y; Liu L; Zhang Z; Zheng Y BMC Plant Biol; 2010 Aug; 10():189. PubMed ID: 20738849 [TBL] [Abstract][Full Text] [Related]
20. QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.). Burton AL; Johnson J; Foerster J; Hanlon MT; Kaeppler SM; Lynch JP; Brown KM Theor Appl Genet; 2015 Jan; 128(1):93-106. PubMed ID: 25326723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]