BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31587160)

  • 1. Pteridophytes in phytoremediation.
    Praveen A; Pandey VC
    Environ Geochem Health; 2020 Aug; 42(8):2399-2411. PubMed ID: 31587160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: An 8-year study.
    Kohda YH; Endo G; Kitajima N; Sugawara K; Chien MF; Inoue C; Miyauchi K
    Sci Total Environ; 2022 Jul; 831():154830. PubMed ID: 35346712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extractive recovery and valorisation of arsenic from contaminated soil through phytoremediation using Pteris cretica.
    Eze VC; Harvey AP
    Chemosphere; 2018 Oct; 208():484-492. PubMed ID: 29886337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of low temperature on comparative arsenic accumulation and release by three
    Rahman F; Sugawara K; Wei S; Kohda YH; Chien MF; Inoue C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(11):1179-1188. PubMed ID: 34445930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil.
    Wan X; Lei M; Chen T
    Sci Total Environ; 2016 Sep; 563-564():796-802. PubMed ID: 26765508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.
    Danh LT; Truong P; Mammucari R; Foster N
    Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: comprehensive evaluation of remediation efficiency correcting for atmospheric depositions.
    Lei M; Wan X; Guo G; Yang J; Chen T
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):124-131. PubMed ID: 27928750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of bioaccumulation of heavy metal by Pteris vittata L. growing in the vicinity of fly ash.
    Kumari A; Lal B; Pakade YB; Chand P
    Int J Phytoremediation; 2011 Sep; 13(8):779-87. PubMed ID: 21972518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of heavy metal and metalloid levels and screening potential of tropical plant species for phytoremediation in Singapore.
    Wang Y; Tan SN; Mohd Yusof ML; Ghosh S; Lam YM
    Environ Pollut; 2022 Feb; 295():118681. PubMed ID: 34933060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: a new approach in phytoremediation.
    Liao XY; Chen TB; Xiao XY; Xie H; Yan XL; Zhai LM; Wu B
    Int J Phytoremediation; 2007; 9(4):269-80. PubMed ID: 18246706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accumulation and subcellular distribution of arsenic and antimony in four fern plants.
    Feng R; Wang X; Wei C; Tu S
    Int J Phytoremediation; 2015; 17(1-6):348-54. PubMed ID: 25409247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoextraction and phytofiltration of arsenic.
    Rozas MA; Alkorta I; Garbisu C
    Rev Environ Health; 2006; 21(1):43-56. PubMed ID: 16700429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.
    Yan X; Liu Q; Wang J; Liao X
    J Environ Sci (China); 2017 Jul; 57():104-109. PubMed ID: 28647229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic uptake and translocation by plants in pot and field experiments.
    Ciurli A; Lenzi L; Alpi A; Pardossi A
    Int J Phytoremediation; 2014; 16(7-12):804-23. PubMed ID: 24933886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic speciation and distribution in an arsenic hyperaccumulating plant.
    Zhang W; Cai Y; Tu C; Ma LQ
    Sci Total Environ; 2002 Dec; 300(1-3):167-77. PubMed ID: 12685480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the dietary arsenic exposures from ingestion of contaminated soil and hyperaccumulating Pteris ferns used in a residential phytoremediation project.
    Ebbs S; Hatfield S; Nagarajan V; Blaylock M
    Int J Phytoremediation; 2010 Jan; 12(1):121-32. PubMed ID: 20734633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.