These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 31587280)
1. Homeotic transformation from stamen to petal in Eriobotrya japonica is associated with hormone signal transduction and reduction of the transcriptional activity of EjAG. Jing D; Chen W; Xia Y; Shi M; Wang P; Wang S; Wu D; He Q; Liang G; Guo Q Physiol Plant; 2020 Apr; 168(4):893-908. PubMed ID: 31587280 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome analysis of flower bud transition and functional characterization of EjAGL17 involved in regulating floral initiation in loquat. Xia Y; Xue B; Shi M; Zhan F; Wu D; Jing D; Wang S; Guo Q; Liang G; He Q PLoS One; 2020; 15(10):e0239382. PubMed ID: 33031442 [TBL] [Abstract][Full Text] [Related]
3. Ectopic expression of an Eriobotrya japonica APETALA3 ortholog rescues the petal and stamen identities in Arabidopsis ap3-3 mutant. Jing D; Chen W; Shi M; Wang D; Xia Y; He Q; Dang J; Guo Q; Liang G Biochem Biophys Res Commun; 2020 Feb; 523(1):33-38. PubMed ID: 31831173 [TBL] [Abstract][Full Text] [Related]
4. An Integrative Analysis of Transcriptome, Proteome and Hormones Reveals Key Differentially Expressed Genes and Metabolic Pathways Involved in Flower Development in Loquat. Jing D; Chen W; Hu R; Zhang Y; Xia Y; Wang S; He Q; Guo Q; Liang G Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698310 [TBL] [Abstract][Full Text] [Related]
5. Expression Pattern and Functional Characterization of Xia Y; Shi M; Chen W; Hu R; Jing D; Wu D; Wang S; Li Q; Deng H; Guo Q; Liang G Front Plant Sci; 2019; 10():1685. PubMed ID: 32010167 [TBL] [Abstract][Full Text] [Related]
6. Differentially Expressed Genes between Carrot Petaloid Cytoplasmic Male Sterile and Maintainer during Floral Development. Liu B; Ou C; Chen S; Cao Q; Zhao Z; Miao Z; Kong X; Zhuang F Sci Rep; 2019 Nov; 9(1):17384. PubMed ID: 31757985 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomics analyses reveal the key genes involved in stamen petaloid formation in Alcea rosea L. Luo Y; Li Y; Yin X; Deng W; Liao J; Pan Y; Jiang B; Yang H; Ding K; Jia Y BMC Plant Biol; 2024 Jun; 24(1):551. PubMed ID: 38877392 [TBL] [Abstract][Full Text] [Related]
8. Disruption of transcription factor RhMYB123 causes the transformation of stamen to malformed petal in rose (Rosa hybrida). Li K; Li Y; Wang Y; Li Y; He J; Li Y; Du L; Gao Y; Ma N; Gao J; Zhou X Plant Cell Rep; 2022 Dec; 41(12):2293-2303. PubMed ID: 35999377 [TBL] [Abstract][Full Text] [Related]
9. Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae). Zhang B; Liu ZX; Ma J; Song Y; Chen FJ Plant Sci; 2015 Dec; 241():277-85. PubMed ID: 26706078 [TBL] [Abstract][Full Text] [Related]
10. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Tzeng TY; Chen HY; Yang CH Plant Physiol; 2002 Dec; 130(4):1827-36. PubMed ID: 12481066 [TBL] [Abstract][Full Text] [Related]
11. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Drews GN; Bowman JL; Meyerowitz EM Cell; 1991 Jun; 65(6):991-1002. PubMed ID: 1675158 [TBL] [Abstract][Full Text] [Related]
12. The Role of EjSVPs in Flower Initiation in Jiang Y; Peng J; Zhang Z; Lin S; Lin S; Yang X Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779080 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome Analysis Reveals Candidate Genes Involved in Gibberellin-Induced Fruit Setting in Triploid Loquat ( Jiang S; Luo J; Xu F; Zhang X Front Plant Sci; 2016; 7():1924. PubMed ID: 28066478 [TBL] [Abstract][Full Text] [Related]
14. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. Benedito VA; Visser PB; van Tuyl JM; Angenent GC; de Vries SC; Krens FA J Exp Bot; 2004 Jun; 55(401):1391-9. PubMed ID: 15155783 [TBL] [Abstract][Full Text] [Related]
15. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163 [TBL] [Abstract][Full Text] [Related]
16. Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions. Lü S; Du X; Lu W; Chong K; Meng Z Evol Dev; 2007; 9(1):92-104. PubMed ID: 17227369 [TBL] [Abstract][Full Text] [Related]
17. The whorl-specific action of a petunia class B floral homeotic gene. Tsuchimoto S; Mayama T; van der Krol A; Ohtsubo E Genes Cells; 2000 Feb; 5(2):89-99. PubMed ID: 10672040 [TBL] [Abstract][Full Text] [Related]
18. Chen W; Wang P; Wang D; Shi M; Xia Y; He Q; Dang J; Guo Q; Jing D; Liang G Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32041257 [TBL] [Abstract][Full Text] [Related]
19. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. Xia Y; Chen W; Xiang W; Wang D; Xue B; Liu X; Xing L; Wu D; Wang S; Guo Q; Liang G BMC Plant Biol; 2021 Feb; 21(1):98. PubMed ID: 33596836 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Identified MADS-Box Genes in Nie C; Xu X; Zhang X; Xia W; Sun H; Li N; Ding Z; Lv Y Plants (Basel); 2023 Sep; 12(17):. PubMed ID: 37687417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]