BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31588146)

  • 1. Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites.
    Cao Q; Hensley DK; Lavrik NV; Venton BJ
    Carbon N Y; 2019 Dec; 155():250-257. PubMed ID: 31588146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanospike coated nanoelectrodes for measurements of neurotransmitters.
    Cao Q; Shao Z; Hensley D; Venton BJ
    Faraday Discuss; 2022 Apr; 233(0):303-314. PubMed ID: 34889344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine.
    Zestos AG; Yang C; Jacobs CB; Hensley D; Venton BJ
    Analyst; 2015 Nov; 140(21):7283-92. PubMed ID: 26389138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine.
    Yang C; Jacobs CB; Nguyen MD; Ganesana M; Zestos AG; Ivanov IN; Puretzky AA; Rouleau CM; Geohegan DB; Venton BJ
    Anal Chem; 2016 Jan; 88(1):645-52. PubMed ID: 26639609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes.
    Weese ME; Krevh RA; Li Y; Alvarez NT; Ross AE
    ACS Sens; 2019 Apr; 4(4):1001-1007. PubMed ID: 30920207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry.
    Mendoza A; Asrat T; Liu F; Wonnenberg P; Zestos AG
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes.
    Maldonado S; Morin S; Stevenson KJ
    Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Dynamics of Adsorbed Dopamine on Solvated Carbon Nanotubes and in a CNT Groove.
    Jia Q; Venton BJ; DuBay KH
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: New insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection.
    Cao Q; Puthongkham P; Venton BJ
    Anal Methods; 2019 Jan; 11(3):247-261. PubMed ID: 30740148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanospikes have improved sensitivity and antifouling properties for adenosine, hydrogen peroxide, and histamine.
    Zhao H; Shrestha K; Hensley DK; Venton BJ
    Anal Bioanal Chem; 2023 Oct; 415(24):6039-6050. PubMed ID: 37505236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests.
    Xiao N; Venton BJ
    Anal Chem; 2012 Sep; 84(18):7816-22. PubMed ID: 22823497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyolefin-derived substrate-grown carbon nanotubes as binder-free electrode for hydrogen evolution in alkaline media.
    Wu X; Tu WH; Veksha A; Chen W; Lisak G
    Chemosphere; 2024 Feb; 349():140769. PubMed ID: 38000550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-Dependent Electrochemistry of Laser-Induced Graphene Electrodes.
    Wirojsaengthong S; Chailapakul O; Tangkijvanich P; Henry CS; Puthongkham P
    Electrochim Acta; 2024 Aug; 494():. PubMed ID: 38881690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors.
    Kurusu F; Tsunoda H; Saito A; Tomita A; Kadota A; Kayahara N; Karube I; Gotoh M
    Analyst; 2006 Dec; 131(12):1292-8. PubMed ID: 17124536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Geometry on Thin Layer and Diffusion Processes at Carbon Electrodes.
    Cao Q; Shao Z; Hensley DK; Lavrik NV; Venton BJ
    Langmuir; 2021 Mar; 37(8):2667-2676. PubMed ID: 33591763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study.
    Banks CE; Compton RG
    Analyst; 2005 Sep; 130(9):1232-9. PubMed ID: 16096667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters.
    Zestos AG
    Int J Electrochem; 2018; 2018():. PubMed ID: 34306762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes.
    Valentini F; Amine A; Orlanducci S; Terranova ML; Palleschi G
    Anal Chem; 2003 Oct; 75(20):5413-21. PubMed ID: 14710820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Roughened Graphene Oxide Microfibers Enhance Electrochemical Reversibility.
    Ostertag BJ; Porshinsky EJ; Nawarathne CP; Ross AE
    Langmuir; 2024 Jun; 40(23):12124-12136. PubMed ID: 38815131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.