These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Catalytic Enantioselective Carbonyl Allylation and Propargylation via Alcohol-Mediated Hydrogen Transfer: Merging the Chemistry of Grignard and Sabatier. Kim SW; Zhang W; Krische MJ Acc Chem Res; 2017 Sep; 50(9):2371-2380. PubMed ID: 28792731 [TBL] [Abstract][Full Text] [Related]
3. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. Santana CG; Krische MJ ACS Catal; 2021 May; 11(9):5572-5585. PubMed ID: 34306816 [TBL] [Abstract][Full Text] [Related]
4. Enantioselective Metal-Catalyzed Reductive Coupling of Alkynes with Carbonyl Compounds and Imines: Convergent Construction of Allylic Alcohols and Amines. Ortiz E; Shezaf J; Chang YH; Krische MJ ACS Catal; 2022 Jul; 12(14):8164-8174. PubMed ID: 37082110 [TBL] [Abstract][Full Text] [Related]
5. Ruthenium-BINAP Catalyzed Alcohol C-H tert-Prenylation via 1,3-Enyne Transfer Hydrogenation: Beyond Stoichiometric Carbanions in Enantioselective Carbonyl Propargylation. Nguyen KD; Herkommer D; Krische MJ J Am Chem Soc; 2016 Apr; 138(16):5238-41. PubMed ID: 27079149 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Enantioselective Synthesis of Chiral Organofluorine Compounds: Alcohol-Mediated Hydrogen Transfer for Catalytic Carbonyl Reductive Coupling. Tauber J; Schwartz LA; Krische MJ Org Process Res Dev; 2019; 23(5):730-736. PubMed ID: 32982140 [TBL] [Abstract][Full Text] [Related]
7. Feedstock Reagents in Metal-Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target-Oriented Synthesis. Doerksen RS; Meyer CC; Krische MJ Angew Chem Int Ed Engl; 2019 Oct; 58(40):14055-14064. PubMed ID: 31162793 [TBL] [Abstract][Full Text] [Related]
8. Catalytic carbonyl addition through transfer hydrogenation: a departure from preformed organometallic reagents. Bower JF; Kim IS; Patman RL; Krische MJ Angew Chem Int Ed Engl; 2009; 48(1):34-46. PubMed ID: 19040235 [TBL] [Abstract][Full Text] [Related]
9. Iridium-, Ruthenium-, and Nickel-Catalyzed C-C Couplings of Methanol, Formaldehyde, and Ethanol with π-Unsaturated Pronucleophiles via Hydrogen Transfer. Meyer CC; Krische MJ J Org Chem; 2023 Apr; 88(8):4965-4974. PubMed ID: 36449710 [TBL] [Abstract][Full Text] [Related]
10. Direct Conversion of Primary Alcohols to 1,2-Amino Alcohols: Enantioselective Iridium-Catalyzed Carbonyl Reductive Coupling of Phthalimido-Allene via Hydrogen Auto-Transfer. Spielmann K; Xiang M; Schwartz LA; Krische MJ J Am Chem Soc; 2019 Sep; 141(36):14136-14141. PubMed ID: 31465211 [TBL] [Abstract][Full Text] [Related]
11. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level via transfer hydrogenative coupling of allyl acetate: departure from chirally modified allyl metal reagents in carbonyl addition. Kim IS; Ngai MY; Krische MJ J Am Chem Soc; 2008 Nov; 130(44):14891-9. PubMed ID: 18841896 [TBL] [Abstract][Full Text] [Related]
12. Allenes and Dienes as Chiral Allylmetal Pronucleophiles in Catalytic Enantioselective C=X Addition: Historical Perspective and State-of-The-Art Survey. Xiang M; Pfaffinger DE; Krische MJ Chemistry; 2021 Sep; 27(52):13107-13116. PubMed ID: 34185926 [TBL] [Abstract][Full Text] [Related]
13. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency. Han SB; Kim IS; Krische MJ Chem Commun (Camb); 2009 Dec; (47):7278-87. PubMed ID: 20024203 [TBL] [Abstract][Full Text] [Related]
14. Historical perspective on ruthenium-catalyzed hydrogen transfer and survey of enantioselective hydrogen auto-transfer processes for the conversion of lower alcohols to higher alcohols. Ortiz E; Shezaf JZ; Shen W; Krische MJ Chem Sci; 2022 Nov; 13(43):12625-12633. PubMed ID: 36516346 [TBL] [Abstract][Full Text] [Related]
15. Alkyne-aldehyde reductive C-C coupling through ruthenium-catalyzed transfer hydrogenation: direct regio- and stereoselective carbonyl vinylation to form trisubstituted allylic alcohols in the absence of premetallated reagents. Leung JC; Patman RL; Sam B; Krische MJ Chemistry; 2011 Oct; 17(44):12437-43. PubMed ID: 21953608 [TBL] [Abstract][Full Text] [Related]
16. Enantioselective carbonyl propargylation by iridium-catalyzed transfer hydrogenative coupling of alcohols and propargyl chlorides. Woo SK; Geary LM; Krische MJ Angew Chem Int Ed Engl; 2012 Jul; 51(31):7830-4. PubMed ID: 22736416 [TBL] [Abstract][Full Text] [Related]
17. Stereo- and Site-Selective Conversion of Primary Alcohols to Allylic Alcohols via Ruthenium-Catalyzed Hydrogen Auto-Transfer Mediated by 2-Butyne. Ortiz E; Chang YH; Shezaf JZ; Shen W; Krische MJ J Am Chem Soc; 2022 May; 144(19):8861-8869. PubMed ID: 35503919 [TBL] [Abstract][Full Text] [Related]
18. Formation of C-C Bonds via Ruthenium Catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level. Shibahara F; Krische MJ Chem Lett; 2008; 37(11):1102-1107. PubMed ID: 21927534 [TBL] [Abstract][Full Text] [Related]
19. Diastereo- and Enantioselective Ruthenium-Catalyzed C-C Coupling of 1-Arylpropynes and Alcohols: Alkynes as Chiral Allylmetal Precursors in Carbonyl Xiang M; Ghosh A; Krische MJ J Am Chem Soc; 2021 Feb; 143(7):2838-2845. PubMed ID: 33555867 [TBL] [Abstract][Full Text] [Related]
20. Carbonyl propargylation from the alcohol or aldehyde oxidation level employing 1,3-enynes as surrogates to preformed allenylmetal reagents: a ruthenium-catalyzed C-C bond-forming transfer hydrogenation. Patman RL; Williams VM; Bower JF; Krische MJ Angew Chem Int Ed Engl; 2008; 47(28):5220-3. PubMed ID: 18528831 [No Abstract] [Full Text] [Related] [Next] [New Search]