These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31588315)

  • 1. Two dimensional diffusion-controlled triplet-triplet annihilation kinetics.
    Gschwend GC; Kazmierczak M; Olaya AJ; Brevet PF; Girault HH
    Chem Sci; 2019 Aug; 10(32):7633-7640. PubMed ID: 31588315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplet-triplet annihilation upconversion through triplet energy transfer at a nanoporous solid-liquid interface.
    Mizokuro T; Abulikemu A; Suzuki K; Sakagami Y; Nishii R; Jin T; Kamada K
    Phys Chem Chem Phys; 2020 Aug; 22(32):17807-17813. PubMed ID: 32618981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of antigen-antibody reactions at solid-liquid interfaces.
    Stenberg M; Nygren H
    J Immunol Methods; 1988 Oct; 113(1):3-15. PubMed ID: 3049824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface reaction-diffusion kinetics on lattice at the microscopic scale.
    Chew WX; Kaizu K; Watabe M; Muniandy SV; Takahashi K; Arjunan SNV
    Phys Rev E; 2019 Apr; 99(4-1):042411. PubMed ID: 31108654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge recombination and exciton annihilation reactions in conjugated polymer blends.
    Howard IA; Hodgkiss JM; Zhang X; Kirov KR; Bronstein HA; Williams CK; Friend RH; Westenhoff S; Greenham NC
    J Am Chem Soc; 2010 Jan; 132(1):328-35. PubMed ID: 19961228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triplet-Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC.
    Prabhakaran A; Jha KK; Sia RCE; Arellano Reyes RA; Sarangi NK; Kogut M; Guthmuller J; Czub J; Dietzek-Ivanšić B; Keyes TE
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):29324-29337. PubMed ID: 38776974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling Behavior of Polymers at Liquid/Liquid Interfaces.
    Taddese T; Cheung DL; Carbone P
    ACS Macro Lett; 2015 Oct; 4(10):1089-1093. PubMed ID: 35614809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general framework for non-exponential delayed fluorescence and phosphorescence decay analysis, illustrated on Protoporphyrin IX.
    Croizat G; Gregor A; Gerelli E; Joniova J; Scholz M; Wagnières G
    J Photochem Photobiol B; 2020 Aug; 209():111887. PubMed ID: 32652463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-dynamics simulations for nonclassical kinetics of diffusion-controlled bimolecular reactions.
    Sung BJ; Yethiraj A
    J Chem Phys; 2005 Sep; 123(11):114503. PubMed ID: 16392569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Temperature 2D Optical Relaxation Visualizes Enhanced Oxygen Exchange Kinetics at Metal-Mixed Conducting Oxide Interfaces.
    Skiba EJ; Perry NH
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47659-47673. PubMed ID: 36226963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid PEG Polymers Containing Antioxidants: A Versatile Platform for Studying Oxygen-Sensitive Photochemical Processes.
    Mongin C; Golden JH; Castellano FN
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24038-48. PubMed ID: 27479333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transitions and crossovers in reaction-diffusion models with catalyst deactivation.
    Mattos TG; Reis FD
    J Chem Phys; 2009 Jul; 131(1):014505. PubMed ID: 19586108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion-influenced reaction rates in the presence of pair interactions.
    Dibak M; Fröhner C; Noé F; Höfling F
    J Chem Phys; 2019 Oct; 151(16):164105. PubMed ID: 31675872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimolecular processes on silica gel surfaces: energetic factors in determining electron-transfer rates.
    Worrall DR; Kirkpatrick I; Williams SL
    Photochem Photobiol Sci; 2004 Jan; 3(1):63-70. PubMed ID: 14743281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angstrom-Scale Electrochemistry at Electrodes with Dimensions Commensurable and Smaller than Individual Reacting Species.
    Zhou L; Yang C; Yang X; Zhang J; Wang C; Wang W; Li M; Lu X; Li K; Yang H; Zhou H; Chen J; Zhan D; Fal'ko VI; Cheng J; Tian Z; Geim AK; Cao Y; Hu S
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202314537. PubMed ID: 37966039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Prospect of Photochemical Reactions in Confined Gel Media.
    Maiti B; Abramov A; Pérez-Ruiz R; Díaz Díaz D
    Acc Chem Res; 2019 Jul; 52(7):1865-1876. PubMed ID: 31016963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixing and reaction kinetics in porous media: an experimental pore scale quantification.
    Anna Pd; Jimenez-Martinez J; Tabuteau H; Turuban R; Le Borgne T; Derrien M; Méheust Y
    Environ Sci Technol; 2014; 48(1):508-16. PubMed ID: 24274690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of Diffusion-Influenced Reaction Networks.
    Gopich IV; Szabo A
    J Phys Chem B; 2018 Dec; 122(49):11338-11354. PubMed ID: 30215520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of enzymatic reactions in crowded media. Effect of the enzyme-obstacle relative size.
    Pitulice L; Vilaseca E; Pastor I; Madurga S; Garcés JL; Isvoran A; Mas F
    Math Biosci; 2014 May; 251():72-82. PubMed ID: 24680707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.