These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31588371)

  • 1. Validation of Optical Coherence Tomography Retinal Segmentation in Neurodegenerative Disease.
    Wong BM; Cheng RW; Mandelcorn ED; Margolin E; El-Defrawy S; Yan P; Santiago AT; Leontieva E; Lou W; ; Hatch W; Hudson C
    Transl Vis Sci Technol; 2019 Sep; 8(5):6. PubMed ID: 31588371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeatability of Foveal Measurements Using Spectralis Optical Coherence Tomography Segmentation Software.
    Ctori I; Huntjens B
    PLoS One; 2015; 10(6):e0129005. PubMed ID: 26076457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thickness mapping of retinal layers by spectral-domain optical coherence tomography.
    Loduca AL; Zhang C; Zelkha R; Shahidi M
    Am J Ophthalmol; 2010 Dec; 150(6):849-55. PubMed ID: 20951975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of segmentation density on spectral domain optical coherence tomography assessment in Stargardt disease.
    Velaga SB; Nittala MG; Jenkins D; Melendez J; Ho A; Strauss RW; Scholl HP; Sadda SR
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):549-556. PubMed ID: 30613916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Agreement of Retinal-Layer Thickness Measures Derived from the Segmentation of Horizontal and Vertical Spectralis OCT Macular Scans.
    Gonzalez Caldito N; Antony B; He Y; Lang A; Nguyen J; Rothman A; Ogbuokiri E; Avornu A; Balcer L; Frohman E; Frohman TC; Bhargava P; Prince J; Calabresi PA; Saidha S
    Curr Eye Res; 2018 Mar; 43(3):415-423. PubMed ID: 29240464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicenter reliability of semiautomatic retinal layer segmentation using OCT.
    Oberwahrenbrock T; Traber GL; Lukas S; Gabilondo I; Nolan R; Songster C; Balk L; Petzold A; Paul F; Villoslada P; Brandt AU; Green AJ; Schippling S
    Neurol Neuroimmunol Neuroinflamm; 2018 May; 5(3):e449. PubMed ID: 29552598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepwise segmentation error correction in optical coherence tomography angiography images of patients with diabetic macular edema.
    Ghasemi Falavarjani K; Mirshahi R; Ghasemizadeh S; Sardarinia M
    Ther Adv Ophthalmol; 2020; 12():2515841420947931. PubMed ID: 32923938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of inner and outer retinal layers using spectral domain optical coherence tomography automated segmentation software in ocular hypertensive and glaucoma patients.
    Cifuentes-Canorea P; Ruiz-Medrano J; Gutierrez-Bonet R; Peña-Garcia P; Saenz-Frances F; Garcia-Feijoo J; Martinez-de-la-Casa JM
    PLoS One; 2018; 13(4):e0196112. PubMed ID: 29672563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automatic software for retinal thickness in eyes with diabetic macular edema from images acquired by cirrus and spectralis systems.
    Lee JY; Chiu SJ; Srinivasan PP; Izatt JA; Toth CA; Farsiu S; Jaffe GJ
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7595-602. PubMed ID: 24084089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma.
    Mansberger SL; Menda SA; Fortune BA; Gardiner SK; Demirel S
    Am J Ophthalmol; 2017 Feb; 174():1-8. PubMed ID: 27818206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes.
    Pazos M; Dyrda AA; Biarnés M; Gómez A; Martín C; Mora C; Fatti G; Antón A
    Ophthalmology; 2017 Aug; 124(8):1218-1228. PubMed ID: 28461015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thickness profiles of retinal layers by optical coherence tomography image segmentation.
    Bagci AM; Shahidi M; Ansari R; Blair M; Blair NP; Zelkha R
    Am J Ophthalmol; 2008 Nov; 146(5):679-87. PubMed ID: 18707672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Long-Term Automated Retinal Layer Segmentation Analysis of the Macula between Silicone Oil and Gas Tamponade after Vitrectomy for Rhegmatogenous Retinal Detachment.
    Inan S; Polat O; Ozcan S; Inan UU
    Ophthalmic Res; 2020; 63(6):524-532. PubMed ID: 32036367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the Iowa Reference Algorithm to the Heidelberg Spectralis optical coherence tomography segmentation algorithm.
    Sun JQ; McGeehan B; Firn K; Irwin D; Grossman M; Ying GS; Kim BJ
    J Biophotonics; 2020 May; 13(5):e201960187. PubMed ID: 32057191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volume Averaging of Spectral-Domain Optical Coherence Tomography Impacts Retinal Segmentation in Children.
    Trimboli-Heidler C; Vogt K; Avery RA
    Transl Vis Sci Technol; 2016 Aug; 5(4):12. PubMed ID: 27570711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A normative database of A-scan data using the Heidelberg Spectralis Spectral Domain Optical Coherence Tomography machine.
    Meyer J; Karri R; Danesh-Meyer H; Drummond K; Symons A
    PLoS One; 2021; 16(7):e0253720. PubMed ID: 34197499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platform-Independent Cirrus and Spectralis Thickness Measurements in Eyes with Diabetic Macular Edema Using Fully Automated Software.
    Willoughby AS; Chiu SJ; Silverman RK; Farsiu S; Bailey C; Wiley HE; Ferris FL; Jaffe GJ
    Transl Vis Sci Technol; 2017 Feb; 6(1):9. PubMed ID: 28180033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of point estimates and average thicknesses of retinal layers measured using manual optical coherence tomography segmentation for quantification of retinal neurodegeneration in multiple sclerosis.
    Sotirchos ES; Seigo MA; Calabresi PA; Saidha S
    Curr Eye Res; 2013 Jan; 38(1):224-8. PubMed ID: 22954302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normative Data and Minimally Detectable Change for Inner Retinal Layer Thicknesses Using a Semi-automated OCT Image Segmentation Pipeline.
    Motamedi S; Gawlik K; Ayadi N; Zimmermann HG; Asseyer S; Bereuter C; Mikolajczak J; Paul F; Kadas EM; Brandt AU
    Front Neurol; 2019; 10():1117. PubMed ID: 31824393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal layer thicknesses and neurodegeneration in early age-related macular degeneration: insights from the Coimbra Eye Study.
    Farinha C; Silva AL; Coimbra R; Nunes S; Cachulo ML; Marques JP; Pires I; Cunha-Vaz J; Silva R
    Graefes Arch Clin Exp Ophthalmol; 2021 Sep; 259(9):2545-2557. PubMed ID: 33738626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.