These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31588505)

  • 1. Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism.
    Hong Z; Zeng X; Wei L; Liu X
    Bioinformatics; 2020 Feb; 36(4):1037-1043. PubMed ID: 31588505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EPI-Mind: Identifying Enhancer-Promoter Interactions Based on Transformer Mechanism.
    Ni Y; Fan L; Wang M; Zhang N; Zuo Y; Liao M
    Interdiscip Sci; 2022 Sep; 14(3):786-794. PubMed ID: 35633468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction.
    Min X; Lu F; Li C
    Curr Pharm Des; 2021; 27(15):1847-1855. PubMed ID: 33234095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data.
    Zhuang Z; Shen X; Pan W
    Bioinformatics; 2019 Sep; 35(17):2899-2906. PubMed ID: 30649185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPIHC: Improving Enhancer-Promoter Interaction Prediction by Using Hybrid Features and Communicative Learning.
    Liu S; Xu X; Yang Z; Zhao X; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3435-3443. PubMed ID: 34473626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network.
    Jing F; Zhang SW; Zhang S
    BMC Bioinformatics; 2020 Nov; 21(1):507. PubMed ID: 33160328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPI-Trans: an effective transformer-based deep learning model for enhancer promoter interaction prediction.
    Ahmed FS; Aly S; Liu X
    BMC Bioinformatics; 2024 Jun; 25(1):216. PubMed ID: 38890584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting enhancer-promoter interactions by deep learning and matching heuristic.
    Min X; Ye C; Liu X; Zeng X
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33096548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. StackEPI: identification of cell line-specific enhancer-promoter interactions based on stacking ensemble learning.
    Fan Y; Peng B
    BMC Bioinformatics; 2022 Jul; 23(1):272. PubMed ID: 35820811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models.
    Wang Y; Jaime-Lara RB; Roy A; Sun Y; Liu X; Joseph PV
    BMC Res Notes; 2021 Mar; 14(1):104. PubMed ID: 33741075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of enhancer-promoter interactions via natural language processing.
    Zeng W; Wu M; Jiang R
    BMC Genomics; 2018 May; 19(Suppl 2):84. PubMed ID: 29764360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition.
    Aladhadh S; Almatroodi SA; Habib S; Alabdulatif A; Khattak SU; Islam M
    Biomolecules; 2022 Dec; 13(1):. PubMed ID: 36671456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting sequence-based features for predicting enhancer-promoter interactions.
    Yang Y; Zhang R; Singh S; Ma J
    Bioinformatics; 2017 Jul; 33(14):i252-i260. PubMed ID: 28881991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.
    Li Y; Shi W; Wasserman WW
    BMC Bioinformatics; 2018 May; 19(1):202. PubMed ID: 29855387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction.
    Talukder A; Saadat S; Li X; Hu H
    Bioinformatics; 2019 Oct; 35(20):3877-3883. PubMed ID: 31410461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RicENN: Prediction of Rice Enhancers with Neural Network Based on DNA Sequences.
    Gao Y; Chen Y; Feng H; Zhang Y; Yue Z
    Interdiscip Sci; 2022 Jun; 14(2):555-565. PubMed ID: 35190950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.
    Agarwal A; Chen L
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers.
    Chen S; Gan M; Lv H; Jiang R
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):565-577. PubMed ID: 33581335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.