These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 31588609)

  • 1. Adjustment for exploratory cut-off selection in randomized clinical trials with survival endpoint.
    Götte H; Kirchner M; Kieser M
    Biom J; 2020 May; 62(3):627-642. PubMed ID: 31588609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation-based adjustment after exploratory biomarker subgroup selection in phase II.
    Götte H; Kirchner M; Sailer MO; Kieser M
    Stat Med; 2017 Jul; 36(15):2378-2390. PubMed ID: 28436046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating candidate principal surrogate endpoints.
    Gilbert PB; Hudgens MG
    Biometrics; 2008 Dec; 64(4):1146-54. PubMed ID: 18363776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bias in retrospective analyses of biomarker effect using data from an outcome-adaptive randomized trial.
    Ji L; McShane LM; Krailo M; Sposto R
    Clin Trials; 2019 Dec; 16(6):599-609. PubMed ID: 31581815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian variable selection method for censored survival data.
    Faraggi D; Simon R
    Biometrics; 1998 Dec; 54(4):1475-85. PubMed ID: 9883546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment effect heterogeneity for univariate subgroups in clinical trials: Shrinkage, standardization, or else.
    Varadhan R; Wang SJ
    Biom J; 2016 Jan; 58(1):133-53. PubMed ID: 26485117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory perspectives on multiplicity in adaptive design clinical trials throughout a drug development program.
    Wang SJ; Hung HM; O'Neill R
    J Biopharm Stat; 2011 Jul; 21(4):846-59. PubMed ID: 21516573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of treatment effect in two-stage confirmatory oncology trials of personalized medicines.
    Li W; Chen C; Li X; Beckman RA
    Stat Med; 2017 May; 36(12):1843-1861. PubMed ID: 28303586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplicity issues in exploratory subgroup analysis.
    Lipkovich I; Dmitrienko A; Muysers C; Ratitch B
    J Biopharm Stat; 2018; 28(1):63-81. PubMed ID: 29173045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probability of success for phase III after exploratory biomarker analysis in phase II.
    Götte H; Kirchner M; Sailer MO
    Pharm Stat; 2017 May; 16(3):178-191. PubMed ID: 28230320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the impact of selection bias on test decisions in trials with a time-to-event outcome.
    Rückbeil MV; Hilgers RD; Heussen N
    Stat Med; 2017 Jul; 36(17):2656-2668. PubMed ID: 28417471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomarker driven population enrichment for adaptive oncology trials with time to event endpoints.
    Mehta C; Schäfer H; Daniel H; Irle S
    Stat Med; 2014 Nov; 33(26):4515-31. PubMed ID: 25130879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interim analysis incorporating short- and long-term binary endpoints.
    Niewczas J; Kunz CU; König F
    Biom J; 2019 May; 61(3):665-687. PubMed ID: 30694566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive randomization for multiarm comparative clinical trials based on joint efficacy/toxicity outcomes.
    Ji Y; Bekele BN
    Biometrics; 2009 Sep; 65(3):876-84. PubMed ID: 19173694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian predictive sample size selection design for single-arm exploratory clinical trials.
    Teramukai S; Daimon T; Zohar S
    Stat Med; 2012 Dec; 31(30):4243-54. PubMed ID: 22807115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimal Bayesian predictive probability design for phase II clinical trials with simple and complicated endpoints.
    Guo B; Liu S
    Biom J; 2020 Mar; 62(2):339-349. PubMed ID: 31402481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomarker-based Bayesian randomized phase II clinical trial design to identify a sensitive patient subpopulation.
    Morita S; Yamamoto H; Sugitani Y
    Stat Med; 2014 Oct; 33(23):4008-16. PubMed ID: 24820639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian model to estimate the cutoff and the clinical utility of a biomarker assay.
    Vradi E; Jaki T; Vonk R; Brannath W
    Stat Methods Med Res; 2019 Aug; 28(8):2538-2556. PubMed ID: 29966502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying cut points for biomarker defined subset effects in clinical trials with survival endpoints.
    He P
    Contemp Clin Trials; 2014 Jul; 38(2):333-7. PubMed ID: 24948401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing temporal agreement between central and local progression-free survival times.
    Zeng D; Cornea E; Dong J; Pan J; Ibrahim JG
    Stat Med; 2015 Feb; 34(5):844-58. PubMed ID: 25393731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.