These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31588744)

  • 1. Modeling the Nucleation of Weak Electrolytes via Hybrid GCMC/MD Simulation.
    Li X; Schmidt JR
    J Chem Theory Comput; 2019 Nov; 15(11):5883-5893. PubMed ID: 31588744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water.
    Sun D; Lakkaraju SK; Jo S; MacKerell AD
    J Chem Theory Comput; 2018 Oct; 14(10):5290-5302. PubMed ID: 30183291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-specific thermodynamics of multicomponent electrolytes: a hybrid HNC/MD approach.
    Vrbka L; Lund M; Kalcher I; Dzubiella J; Netz RR; Kunz W
    J Chem Phys; 2009 Oct; 131(15):154109. PubMed ID: 20568849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating adsorptive expansion of zeolites: application to biomass-derived solutions in contact with silicalite.
    Santander JE; Tsapatsis M; Auerbach SM
    Langmuir; 2013 Apr; 29(15):4866-76. PubMed ID: 23495719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
    Ge Y; Melling OJ; Dong W; Essex JW; Mobley DL
    J Comput Aided Mol Des; 2022 Oct; 36(10):767-779. PubMed ID: 36198874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations.
    Lakkaraju SK; Raman EP; Yu W; MacKerell AD
    J Chem Theory Comput; 2014 Jun; 10(6):2281-2290. PubMed ID: 24932136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrolytes in a nanometer slab-confinement: ion-specific structure and solvation forces.
    Kalcher I; Schulz JC; Dzubiella J
    J Chem Phys; 2010 Oct; 133(16):164511. PubMed ID: 21033809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics.
    Horsch M; Vrabec J; Bernreuther M; Grottel S; Reina G; Wix A; Schaber K; Hasse H
    J Chem Phys; 2008 Apr; 128(16):164510. PubMed ID: 18447462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation.
    Xiong R; León M; Nikolakis V; Sandler SI; Vlachos DG
    ChemSusChem; 2014 Jan; 7(1):236-44. PubMed ID: 24106213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. py-MCMD: Python Software for Performing Hybrid Monte Carlo/Molecular Dynamics Simulations with GOMC and NAMD.
    Barhaghi MS; Crawford B; Schwing G; Hardy DJ; Stone JE; Schwiebert L; Potoff J; Tajkhorshid E
    J Chem Theory Comput; 2022 Aug; 18(8):4983-4994. PubMed ID: 35621307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grand canonical steady-state simulation of nucleation.
    Horsch M; Vrabec J
    J Chem Phys; 2009 Nov; 131(18):184104. PubMed ID: 19916595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Grand Canonical and Conventional Molecular Dynamics Simulation Methods for Protein-Bound Water Networks.
    Ekberg V; Samways ML; Misini Ignjatović M; Essex JW; Ryde U
    ACS Phys Chem Au; 2022 May; 2(3):247-259. PubMed ID: 35637786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome.
    Ge X; Roux B
    J Phys Chem B; 2010 Jul; 114(29):9525-39. PubMed ID: 20608691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation free-energy barriers with Hybrid Monte-Carlo/Umbrella Sampling.
    Gonzalez MA; Sanz E; McBride C; Abascal JL; Vega C; Valeriani C
    Phys Chem Chem Phys; 2014 Dec; 16(45):24913-9. PubMed ID: 25323418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy calculations along entropic pathways. II. Droplet nucleation in binary mixtures.
    Desgranges C; Delhommelle J
    J Chem Phys; 2016 Dec; 145(23):234505. PubMed ID: 27984874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study by the grand canonical Monte Carlo and molecular dynamics simulations on the squeezing behavior of nanometers confined liquid films.
    Leng Y; Xiang Y; Lei Y; Rao Q
    J Chem Phys; 2013 Aug; 139(7):074704. PubMed ID: 23968104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2014 Aug; 141(8):084501. PubMed ID: 25173015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of hydrodynamics on the crystal nucleation of nearly hard spheres.
    Fiorucci G; Coli GM; Padding JT; Dijkstra M
    J Chem Phys; 2020 Feb; 152(6):064903. PubMed ID: 32061217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating Convergence of Free Energy Computations with Hamiltonian Simulated Annealing of Solvent (HSAS).
    Jiang W
    J Chem Theory Comput; 2019 Apr; 15(4):2179-2186. PubMed ID: 30821969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.