These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31588782)

  • 1. Comparison of normalization methods for Hi-C data.
    Lyu H; Liu E; Wu Z
    Biotechniques; 2020 Feb; 68(2):56-64. PubMed ID: 31588782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
    Stansfield JC; Cresswell KG; Vladimirov VI; Dozmorov MG
    BMC Bioinformatics; 2018 Jul; 19(1):279. PubMed ID: 30064362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments.
    Stansfield JC; Cresswell KG; Dozmorov MG
    Bioinformatics; 2019 Sep; 35(17):2916-2923. PubMed ID: 30668639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. normGAM: an R package to remove systematic biases in genome architecture mapping data.
    Liu T; Wang Z
    BMC Genomics; 2019 Dec; 20(Suppl 12):1006. PubMed ID: 31888469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases.
    Kobets VA; Ulianov SV; Galitsyna AA; Doronin SA; Mikhaleva EA; Gelfand MS; Shevelyov YY; Razin SV; Khrameeva EE
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36759336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. covNorm: An R package for coverage based normalization of Hi-C and capture Hi-C data.
    Kim K; Jung I
    Comput Struct Biotechnol J; 2021; 19():3149-3159. PubMed ID: 34141136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OneD: increasing reproducibility of Hi-C samples with abnormal karyotypes.
    Vidal E; le Dily F; Quilez J; Stadhouders R; Cuartero Y; Graf T; Marti-Renom MA; Beato M; Filion GJ
    Nucleic Acids Res; 2018 May; 46(8):e49. PubMed ID: 29394371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
    Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i471-i480. PubMed ID: 38940142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MHiC, an integrated user-friendly tool for the identification and visualization of significant interactions in Hi-C data.
    Khakmardan S; Rezvani M; Pouyan AA; Fateh M; Alinejad-Rokny H
    BMC Genomics; 2020 Mar; 21(1):225. PubMed ID: 32164554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments.
    Juric I; Yu M; Abnousi A; Raviram R; Fang R; Zhao Y; Zhang Y; Qiu Y; Yang Y; Li Y; Ren B; Hu M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006982. PubMed ID: 30986246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing networks for differential analysis of chromatin interactions.
    Liu L; Ruan J
    J Bioinform Comput Biol; 2017 Dec; 15(6):1740008. PubMed ID: 29113562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HCMB: A stable and efficient algorithm for processing the normalization of highly sparse Hi-C contact data.
    Wu H; Wang X; Chu M; Li D; Cheng L; Zhou K
    Comput Struct Biotechnol J; 2021; 19():2637-2645. PubMed ID: 34025950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective normalization for copy number variation in Hi-C data.
    Servant N; Varoquaux N; Heard E; Barillot E; Vert JP
    BMC Bioinformatics; 2018 Sep; 19(1):313. PubMed ID: 30189838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HiTea: a computational pipeline to identify non-reference transposable element insertions in Hi-C data.
    Jain D; Chu C; Alver BH; Lee S; Lee EA; Park PJ
    Bioinformatics; 2021 May; 37(8):1045-1051. PubMed ID: 33136153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chicdiff: a computational pipeline for detecting differential chromosomal interactions in Capture Hi-C data.
    Cairns J; Orchard WR; Malysheva V; Spivakov M
    Bioinformatics; 2019 Nov; 35(22):4764-4766. PubMed ID: 31197313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
    Wang Y; Guo Z; Cheng J
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-InterSecture-a computational tool for interspecies comparison of genome architecture.
    Nuriddinov M; Fishman V
    Bioinformatics; 2019 Dec; 35(23):4912-4921. PubMed ID: 31116383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.