These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31588832)

  • 21. Insights in pathogenesis of multiple sclerosis: nitric oxide may induce mitochondrial dysfunction of oligodendrocytes.
    Lan M; Tang X; Zhang J; Yao Z
    Rev Neurosci; 2018 Jan; 29(1):39-53. PubMed ID: 28822986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: A systematic review and future research directions.
    Edwards T; Pilutti LA
    Mult Scler Relat Disord; 2017 Aug; 16():31-39. PubMed ID: 28755682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondria-targeted Antioxidants as a Prospective Therapeutic Strategy for Multiple Sclerosis.
    Fetisova E; Chernyak B; Korshunova G; Muntyan M; Skulachev V
    Curr Med Chem; 2017; 24(19):2086-2114. PubMed ID: 28302008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutamate, T cells and multiple sclerosis.
    Levite M
    J Neural Transm (Vienna); 2017 Jul; 124(7):775-798. PubMed ID: 28236206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viral infection at the blood-brain barrier in multiple sclerosis:--an ultrastructural study of tissues from a UK Regional Brain Bank.
    Kirk J; Zhou AL
    Mult Scler; 1996 Feb; 1(4):242-52. PubMed ID: 9345442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy.
    Akassoglou K; Bauer J; Kassiotis G; Pasparakis M; Lassmann H; Kollias G; Probert L
    Am J Pathol; 1998 Sep; 153(3):801-13. PubMed ID: 9736029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of Mitochondrial Dysfunction in Experimental Autoimmune Encephalomyelitis (EAE) Models of Multiple Sclerosis.
    Ng X; Sadeghian M; Heales S; Hargreaves IP
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31600882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis.
    Miller ED; Dziedzic A; Saluk-Bijak J; Bijak M
    Nutrients; 2019 Jul; 11(7):. PubMed ID: 31284389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial DNA Double-Strand Breaks in Oligodendrocytes Cause Demyelination, Axonal Injury, and CNS Inflammation.
    Madsen PM; Pinto M; Patel S; McCarthy S; Gao H; Taherian M; Karmally S; Pereira CV; Dvoriantchikova G; Ivanov D; Tanaka KF; Moraes CT; Brambilla R
    J Neurosci; 2017 Oct; 37(42):10185-10199. PubMed ID: 28931570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of inflammation and apoptosis in multiple sclerosis: Comparative analysis between the periphery and the central nervous system.
    Macchi B; Marino-Merlo F; Nocentini U; Pisani V; Cuzzocrea S; Grelli S; Mastino A
    J Neuroimmunol; 2015 Oct; 287():80-7. PubMed ID: 26439966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the potential harmful effects of E-Cigarettes (EC) on the developing brain: The relationship between vaping-induced oxidative stress and adolescent/young adults social maladjustment.
    Tobore TO
    J Adolesc; 2019 Oct; 76():202-209. PubMed ID: 31574388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis.
    Bando Y; Nomura T; Bochimoto H; Murakami K; Tanaka T; Watanabe T; Yoshida S
    Neurochem Int; 2015 Feb; 81():16-27. PubMed ID: 25595039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Update on the Role of Matrix Metalloproteinases in the Pathogenesis of Multiple Sclerosis.
    Boziki M; Grigoriadis N
    Med Chem; 2018 Feb; 14(2):155-169. PubMed ID: 28875862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial dysfunction plays a key role in progressive axonal loss in Multiple Sclerosis.
    Andrews HE; Nichols PP; Bates D; Turnbull DM
    Med Hypotheses; 2005; 64(4):669-77. PubMed ID: 15694681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple sclerosis.
    Miller E
    Adv Exp Med Biol; 2012; 724():222-38. PubMed ID: 22411246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absence of system x
    Merckx E; Albertini G; Paterka M; Jensen C; Albrecht P; Dietrich M; Van Liefferinge J; Bentea E; Verbruggen L; Demuyser T; Deneyer L; Lewerenz J; van Loo G; De Keyser J; Sato H; Maher P; Methner A; Massie A
    J Neuroinflammation; 2017 Jan; 14(1):9. PubMed ID: 28086920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prostaglandins in pathogenesis and treatment of multiple sclerosis.
    Mirshafiey A; Jadidi-Niaragh F
    Immunopharmacol Immunotoxicol; 2010 Dec; 32(4):543-54. PubMed ID: 20233088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lessons from the neuropathology of atypical forms of multiple sclerosis.
    Stadelmann C; Brück W
    Neurol Sci; 2004 Nov; 25 Suppl 4():S319-22. PubMed ID: 15727225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis.
    Brück W
    J Neurol; 2005 Nov; 252 Suppl 5():v10-5. PubMed ID: 16254696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondria in multiple sclerosis.
    Ghafourifar P; Mousavizadeh K; Parihar MS; Nazarewicz RR; Parihar A; Zenebe WJ
    Front Biosci; 2008 Jan; 13():3116-26. PubMed ID: 17981781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.