These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31589030)

  • 21. A new calibration concept for a reproducible quantitative detection based on SERS measurements in a microfluidic device demonstrated on the model analyte adenine.
    Kämmer E; Olschewski K; Bocklitz T; Rösch P; Weber K; Cialla D; Popp J
    Phys Chem Chem Phys; 2014 May; 16(19):9056-63. PubMed ID: 24695457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique.
    Le Ru EC; Meyer M; Etchegoin PG
    J Phys Chem B; 2006 Feb; 110(4):1944-8. PubMed ID: 16471765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasensitive surface-enhanced Raman scattering detection in common fluids.
    Yang S; Dai X; Stogin BB; Wong TS
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):268-73. PubMed ID: 26719413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status.
    Lee HM; Jin SM; Kim HM; Suh YD
    Phys Chem Chem Phys; 2013 Apr; 15(15):5276-87. PubMed ID: 23525118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CNN-assisted SERS enables ultra-sensitive and simultaneous detection of Scr and BUN for rapid kidney function assessment.
    Lu P; Lin D; Chen N; Wang L; Zhang X; Chen H; Ma P
    Anal Methods; 2023 Jan; 15(3):322-332. PubMed ID: 36594673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe.
    Dinish US; Balasundaram G; Chang YT; Olivo M
    J Biophotonics; 2014 Nov; 7(11-12):956-65. PubMed ID: 23963680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paper-based SERS analysis with smartphones as Raman spectral analyzers.
    Zeng F; Mou T; Zhang C; Huang X; Wang B; Ma X; Guo J
    Analyst; 2018 Dec; 144(1):137-142. PubMed ID: 30484444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A biosensing method for the direct serological detection of liver diseases by integrating a SERS-based sensor and a CNN classifier.
    Cheng N; Chen D; Lou B; Fu J; Wang H
    Biosens Bioelectron; 2021 Aug; 186():113246. PubMed ID: 33965791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistics of single-molecule surface enhanced Raman scattering signals: fluctuation analysis with multiple analyte techniques.
    Etchegoin PG; Meyer M; Blackie E; Le Ru EC
    Anal Chem; 2007 Nov; 79(21):8411-5. PubMed ID: 17915937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silver nanodendrites for ultralow detection of thiram based on surface-enhanced Raman spectroscopy.
    Verma AK; Soni RK
    Nanotechnology; 2019 Sep; 30(38):385502. PubMed ID: 31181546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple strategy to improve the sensitivity of probe molecules on SERS substrates.
    Sun C; Chen T; Ruan W; Jung YM; Cong Q; Zhao B
    Talanta; 2019 Apr; 195():221-228. PubMed ID: 30625535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism.
    Itoh T; Yamamoto YS
    Analyst; 2016 Aug; 141(17):5000-9. PubMed ID: 27241875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-enhanced Raman spectroscopy (SERS): progress and trends.
    Cialla D; März A; Böhme R; Theil F; Weber K; Schmitt M; Popp J
    Anal Bioanal Chem; 2012 Apr; 403(1):27-54. PubMed ID: 22205182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap.
    Chen BQ; Zhang C; Li J; Li ZY; Xia Y
    Nanoscale; 2016 Aug; 8(34):15730-6. PubMed ID: 27526632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling Single-Drop Microextraction with SERS: A Demonstration Using p-MBA on Gold Nanohole Array Substrate.
    Santos EB; Valsecchi C; Gonçalves JLS; Ávila LF; Menezes JW
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zrimsek AB; Chiang N; Mattei M; Zaleski S; McAnally MO; Chapman CT; Henry AI; Schatz GC; Van Duyne RP
    Chem Rev; 2017 Jun; 117(11):7583-7613. PubMed ID: 28610424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1T' Transition Metal Telluride Atomic Layers for Plasmon-Free SERS at Femtomolar Levels.
    Tao L; Chen K; Chen Z; Cong C; Qiu C; Chen J; Wang X; Chen H; Yu T; Xie W; Deng S; Xu JB
    J Am Chem Soc; 2018 Jul; 140(28):8696-8704. PubMed ID: 29927248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard.
    Jie Z; Zenghe Y; Xiaolei Z; Yong Z
    Opt Express; 2018 Sep; 26(18):23534-23539. PubMed ID: 30184852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.