These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 31589320)
1. Modeling Breast Cancer Using CRISPR-Cas9-Mediated Engineering of Human Breast Organoids. Dekkers JF; Whittle JR; Vaillant F; Chen HR; Dawson C; Liu K; Geurts MH; Herold MJ; Clevers H; Lindeman GJ; Visvader JE J Natl Cancer Inst; 2020 May; 112(5):540-544. PubMed ID: 31589320 [TBL] [Abstract][Full Text] [Related]
2. Tumor suppressor role of cytoplasmic polyadenylation element binding protein 2 (CPEB2) in human mammary epithelial cells. Tordjman J; Majumder M; Amiri M; Hasan A; Hess D; Lala PK BMC Cancer; 2019 Jun; 19(1):561. PubMed ID: 31185986 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Naert T; Colpaert R; Van Nieuwenhuysen T; Dimitrakopoulou D; Leoen J; Haustraete J; Boel A; Steyaert W; Lepez T; Deforce D; Willaert A; Creytens D; Vleminckx K Sci Rep; 2016 Oct; 6():35264. PubMed ID: 27739525 [TBL] [Abstract][Full Text] [Related]
4. Role of RB1 in human embryonic stem cell-derived retinal organoids. Zheng C; Schneider JW; Hsieh J Dev Biol; 2020 Jun; 462(2):197-207. PubMed ID: 32197890 [TBL] [Abstract][Full Text] [Related]
5. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Xue W; Chen S; Yin H; Tammela T; Papagiannakopoulos T; Joshi NS; Cai W; Yang G; Bronson R; Crowley DG; Zhang F; Anderson DG; Sharp PA; Jacks T Nature; 2014 Oct; 514(7522):380-4. PubMed ID: 25119044 [TBL] [Abstract][Full Text] [Related]
7. Probing the Tumor Suppressor Function of BAP1 in CRISPR-Engineered Human Liver Organoids. Artegiani B; van Voorthuijsen L; Lindeboom RGH; Seinstra D; Heo I; Tapia P; López-Iglesias C; Postrach D; Dayton T; Oka R; Hu H; van Boxtel R; van Es JH; Offerhaus J; Peters PJ; van Rheenen J; Vermeulen M; Clevers H Cell Stem Cell; 2019 Jun; 24(6):927-943.e6. PubMed ID: 31130514 [TBL] [Abstract][Full Text] [Related]
8. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research]. Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746 [TBL] [Abstract][Full Text] [Related]
9. Establishment of TP53-knockout canine cells using optimized CRIPSR/Cas9 vector system for canine cancer research. Eun K; Park MG; Jeong YW; Jeong YI; Hyun SH; Hwang WS; Kim SH; Kim H BMC Biotechnol; 2019 Jan; 19(1):1. PubMed ID: 30606176 [TBL] [Abstract][Full Text] [Related]
10. Assessing the origin of high-grade serous ovarian cancer using CRISPR-modification of mouse organoids. Lõhmussaar K; Kopper O; Korving J; Begthel H; Vreuls CPH; van Es JH; Clevers H Nat Commun; 2020 May; 11(1):2660. PubMed ID: 32461556 [TBL] [Abstract][Full Text] [Related]
11. Compound Genomic Alterations of TP53, PTEN, and RB1 Tumor Suppressors in Localized and Metastatic Prostate Cancer. Hamid AA; Gray KP; Shaw G; MacConaill LE; Evan C; Bernard B; Loda M; Corcoran NM; Van Allen EM; Choudhury AD; Sweeney CJ Eur Urol; 2019 Jul; 76(1):89-97. PubMed ID: 30553611 [TBL] [Abstract][Full Text] [Related]
12. Identification of CDC25 as a Common Therapeutic Target for Triple-Negative Breast Cancer. Liu JC; Granieri L; Shrestha M; Wang DY; Vorobieva I; Rubie EA; Jones R; Ju Y; Pellecchia G; Jiang Z; Palmerini CA; Ben-David Y; Egan SE; Woodgett JR; Bader GD; Datti A; Zacksenhaus E Cell Rep; 2018 Apr; 23(1):112-126. PubMed ID: 29617654 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas 9 genome editing and its applications in organoids. Driehuis E; Clevers H Am J Physiol Gastrointest Liver Physiol; 2017 Mar; 312(3):G257-G265. PubMed ID: 28126704 [TBL] [Abstract][Full Text] [Related]
14. CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Geisinger JM; Stearns T Nucleic Acids Res; 2020 Sep; 48(16):9067-9081. PubMed ID: 32687165 [TBL] [Abstract][Full Text] [Related]
15. Applications of kidney organoids derived from human pluripotent stem cells. Kim YK; Nam SA; Yang CW Korean J Intern Med; 2018 Jul; 33(4):649-659. PubMed ID: 29961307 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of Radiation Sensitivity Differences in Mouse Liver Tumor Organoids Using CRISPR/Cas9-Mediated Gene Mutation. Jeon W; Jung SY; Lee CY; Kim WT; Kim H; Jang KW; Lim H; Lee M; Jeong DH; Kim SD; Kim IA; Choi SH; Son TG; Kim KS Technol Cancer Res Treat; 2023; 22():15330338231165125. PubMed ID: 36960537 [TBL] [Abstract][Full Text] [Related]
17. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system. Lyu C; Shen J; Wang R; Gu H; Zhang J; Xue F; Liu X; Liu W; Fu R; Zhang L; Li H; Zhang X; Cheng T; Yang R; Zhang L Stem Cell Res Ther; 2018 Apr; 9(1):92. PubMed ID: 29625575 [TBL] [Abstract][Full Text] [Related]
18. Engineering human knock-in organoids. Yang Q; Oost KC; Liberali P Nat Cell Biol; 2020 Mar; 22(3):261-263. PubMed ID: 32123334 [No Abstract] [Full Text] [Related]
19. CRISPR used to create mouse models. Cancer Discov; 2014 Nov; 4(11):1248-9. PubMed ID: 25367932 [No Abstract] [Full Text] [Related]
20. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice. Xu R; Wei P; Yang J Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]