BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 31589320)

  • 21. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.
    Matano M; Date S; Shimokawa M; Takano A; Fujii M; Ohta Y; Watanabe T; Kanai T; Sato T
    Nat Med; 2015 Mar; 21(3):256-62. PubMed ID: 25706875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation.
    Naeimi Kararoudi M; Hejazi SS; Elmas E; Hellström M; Naeimi Kararoudi M; Padma AM; Lee D; Dolatshad H
    Front Immunol; 2018; 9():1711. PubMed ID: 30233563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human Barrett epithelial organoids.
    Liu X; Cheng Y; Abraham JM; Wang Z; Wang Z; Ke X; Yan R; Shin EJ; Ngamruengphong S; Khashab MA; Zhang G; McNamara G; Ewald AJ; Lin D; Liu Z; Meltzer SJ
    Cancer Lett; 2018 Nov; 436():109-118. PubMed ID: 30144514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer.
    Wang S; Liu JC; Kim D; Datti A; Zacksenhaus E
    Breast Cancer Res; 2016 Jan; 18(1):9. PubMed ID: 26781438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of human-induced pluripotent stem cells carrying homozygous RB1 gene deletion.
    Deng X; Iwagawa T; Fukushima M; Watanabe S
    Genes Cells; 2020 Jul; 25(7):510-517. PubMed ID: 32277725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis.
    Nanki K; Toshimitsu K; Takano A; Fujii M; Shimokawa M; Ohta Y; Matano M; Seino T; Nishikori S; Ishikawa K; Kawasaki K; Togasaki K; Takahashi S; Sukawa Y; Ishida H; Sugimoto S; Kawakubo H; Kim J; Kitagawa Y; Sekine S; Koo BK; Kanai T; Sato T
    Cell; 2018 Aug; 174(4):856-869.e17. PubMed ID: 30096312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient genetic editing of human intestinal organoids using ribonucleoprotein-based CRISPR.
    Skoufou-Papoutsaki N; Adler S; D'Santos P; Mannion L; Mehmed S; Kemp R; Smith A; Perrone F; Nayak K; Russell A; Zilbauer M; Winton DJ
    Dis Model Mech; 2023 Oct; 16(10):. PubMed ID: 37772705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis.
    Heitink L; Whittle JR; Vaillant F; Capaldo BD; Dekkers JF; Dawson CA; Milevskiy MJG; Surgenor E; Tsai M; Chen HR; Christie M; Chen Y; Smyth GK; Herold MJ; Strasser A; Lindeman GJ; Visvader JE
    Mol Oncol; 2022 Mar; 16(5):1119-1131. PubMed ID: 35000262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells.
    Kawamura N; Nimura K; Nagano H; Yamaguchi S; Nonomura N; Kaneda Y
    Oncotarget; 2015 Sep; 6(26):22361-74. PubMed ID: 26087476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells.
    Garreta E; González F; Montserrat N
    Nephron; 2018; 138(1):48-59. PubMed ID: 28988229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pooled In Vitro and In Vivo CRISPR-Cas9 Screening Identifies Tumor Suppressors in Human Colon Organoids.
    Michels BE; Mosa MH; Streibl BI; Zhan T; Menche C; Abou-El-Ardat K; Darvishi T; Członka E; Wagner S; Winter J; Medyouf H; Boutros M; Farin HF
    Cell Stem Cell; 2020 May; 26(5):782-792.e7. PubMed ID: 32348727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reverse-engineering the serrated neoplasia pathway using CRISPR-Cas9.
    Bleijenberg A; Dekker E
    Nat Rev Gastroenterol Hepatol; 2018 Sep; 15(9):522-524. PubMed ID: 29875470
    [No Abstract]   [Full Text] [Related]  

  • 33. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. p53 Throws CRISPR a Curve.
    Carroll D
    Trends Pharmacol Sci; 2018 Sep; 39(9):783-784. PubMed ID: 30006230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nuclear Envelope Rupture Is Enhanced by Loss of p53 or Rb.
    Yang Z; Maciejowski J; de Lange T
    Mol Cancer Res; 2017 Nov; 15(11):1579-1586. PubMed ID: 28811362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [CRISPR-Cas system as molecular scissors for gene therapy].
    Heinz GA; Mashreghi MF
    Z Rheumatol; 2017 Feb; 76(1):46-49. PubMed ID: 28124743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide CRISPR screens identify novel regulators of wild-type and mutant p53 stability.
    Lü Y; Cho T; Mukherjee S; Suarez CF; Gonzalez-Foutel NS; Malik A; Martinez S; Dervovic D; Oh RH; Langille E; Al-Zahrani KN; Hoeg L; Lin ZY; Tsai R; Mbamalu G; Rotter V; Ashton-Prolla P; Moffat J; Chemes LB; Gingras AC; Oren M; Durocher D; Schramek D
    Mol Syst Biol; 2024 Jun; 20(6):719-740. PubMed ID: 38580884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR: Stressed about p53?
    Foronda M; Dow LE
    Trends Mol Med; 2018 Sep; 24(9):731-733. PubMed ID: 30017531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.