These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31589321)
1. Formation of Spherical Palmelloid Colony with Enhanced Lipid Accumulation by Gel Encapsulation of Chlamydomonas debaryana NIES-2212. Yoshitomi T; Kaminaga S; Sato N; Toyoshima M; Moriyama T; Yoshimoto K Plant Cell Physiol; 2020 Jan; 61(1):158-168. PubMed ID: 31589321 [TBL] [Abstract][Full Text] [Related]
2. High-Level Accumulation of Triacylglycerol and Starch in Photoautotrophically Grown Chlamydomonas debaryana NIES-2212. Toyoshima M; Sato N Plant Cell Physiol; 2015 Dec; 56(12):2447-56. PubMed ID: 26542110 [TBL] [Abstract][Full Text] [Related]
3. Optimization of triacylglycerol and starch production in Chlamydomonas debaryana NIES-2212 with regard to light intensity and CO2 concentration. Toyoshima M; Sato N Microbiology (Reading); 2018 Mar; 164(3):359-368. PubMed ID: 29458672 [TBL] [Abstract][Full Text] [Related]
4. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934 [TBL] [Abstract][Full Text] [Related]
5. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii. Hidayati NA; Yamada-Oshima Y; Iwai M; Yamano T; Kajikawa M; Sakurai N; Suda K; Sesoko K; Hori K; Obayashi T; Shimojima M; Fukuzawa H; Ohta H Plant J; 2019 Nov; 100(3):610-626. PubMed ID: 31350858 [TBL] [Abstract][Full Text] [Related]
6. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis. Liu J; Han D; Yoon K; Hu Q; Li Y Plant J; 2016 Apr; 86(1):3-19. PubMed ID: 26919811 [TBL] [Abstract][Full Text] [Related]
7. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. Boyle NR; Page MD; Liu B; Blaby IK; Casero D; Kropat J; Cokus SJ; Hong-Hermesdorf A; Shaw J; Karpowicz SJ; Gallaher SD; Johnson S; Benning C; Pellegrini M; Grossman A; Merchant SS J Biol Chem; 2012 May; 287(19):15811-25. PubMed ID: 22403401 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Iwai M; Ikeda K; Shimojima M; Ohta H Plant Biotechnol J; 2014 Aug; 12(6):808-19. PubMed ID: 24909748 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Lv H; Qu G; Qi X; Lu L; Tian C; Ma Y Genomics; 2013 Apr; 101(4):229-37. PubMed ID: 23396177 [TBL] [Abstract][Full Text] [Related]
10. TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Merchant SS; Kropat J; Liu B; Shaw J; Warakanont J Curr Opin Biotechnol; 2012 Jun; 23(3):352-63. PubMed ID: 22209109 [TBL] [Abstract][Full Text] [Related]
11. Enhanced triacylglycerol production in oleaginous microalga Neochloris oleoabundans by co-overexpression of lipogenic genes: Plastidial LPAAT1 and ER-located DGAT2. Chungjatupornchai W; Fa-Aroonsawat S J Biosci Bioeng; 2021 Feb; 131(2):124-130. PubMed ID: 33069576 [TBL] [Abstract][Full Text] [Related]
12. Assessment of a Novel Algal Strain Chlamydomonas debaryana NIREMACC03 for Mass Cultivation, Biofuels Production and Kinetic Studies. Mishra S; Singh N; Sarma AK Appl Biochem Biotechnol; 2015 Aug; 176(8):2253-66. PubMed ID: 26093613 [TBL] [Abstract][Full Text] [Related]
13. Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. Ramanan R; Kim BH; Cho DH; Ko SR; Oh HM; Kim HS FEBS Lett; 2013 Feb; 587(4):370-7. PubMed ID: 23313852 [TBL] [Abstract][Full Text] [Related]
14. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Liu B; Vieler A; Li C; Daniel Jones A; Benning C Bioresour Technol; 2013 Oct; 146():310-316. PubMed ID: 23948268 [TBL] [Abstract][Full Text] [Related]
15. Endoplasmic reticulum acyltransferase with prokaryotic substrate preference contributes to triacylglycerol assembly in Kim Y; Terng EL; Riekhof WR; Cahoon EB; Cerutti H Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1652-1657. PubMed ID: 29382746 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of a Zhao J; Ge Y; Liu K; Yamaoka Y; Zhang D; Chi Z; Akkaya M; Kong F J Agric Food Chem; 2023 Nov; 71(46):17833-17841. PubMed ID: 37934701 [TBL] [Abstract][Full Text] [Related]
17. Interaction of DGAT1 and PDAT1 to enhance TAG assembly in Arabidopsis. Lee HG; Seo PJ Plant Signal Behav; 2019; 14(1):1554467. PubMed ID: 30537885 [TBL] [Abstract][Full Text] [Related]
18. The MYB96 Transcription Factor Regulates Triacylglycerol Accumulation by Activating DGAT1 and PDAT1 Expression in Arabidopsis Seeds. Lee HG; Kim H; Suh MC; Kim HU; Seo PJ Plant Cell Physiol; 2018 Jul; 59(7):1432-1442. PubMed ID: 29660088 [TBL] [Abstract][Full Text] [Related]
19. Expression of Chlamydomonas reinhardtii chloroplast diacylglycerol acyltransferase 3 is induced by light in concert with triacylglycerol accumulation. Carro MLM; Gonorazky G; Soto D; Mamone L; Bagnato C; Pagnussat LA; Beligni MV Plant J; 2022 Apr; 110(1):262-276. PubMed ID: 35043497 [TBL] [Abstract][Full Text] [Related]
20. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]