These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 31589408)
1. Translucency of Graphene to van der Waals Forces Applies to Atoms/Molecules with Different Polar Character. Presel F; Gijón A; Hernández ER; Lacovig P; Lizzit S; Alfè D; Baraldi A ACS Nano; 2019 Oct; 13(10):12230-12241. PubMed ID: 31589408 [TBL] [Abstract][Full Text] [Related]
2. Cooperative interplay of van der Waals forces and quantum nuclear effects on adsorption: H at graphene and at coronene. Davidson ER; Klimeš J; Alfè D; Michaelides A ACS Nano; 2014 Oct; 8(10):9905-13. PubMed ID: 25300825 [TBL] [Abstract][Full Text] [Related]
3. van der Waals screening by single-layer graphene and molybdenum disulfide. Tsoi S; Dev P; Friedman AL; Stine R; Robinson JT; Reinecke TL; Sheehan PE ACS Nano; 2014 Dec; 8(12):12410-7. PubMed ID: 25412420 [TBL] [Abstract][Full Text] [Related]
4. Physisorption, Diffusion, and Chemisorption Pathways of H2 Molecule on Graphene and on (2,2) Carbon Nanotube by First Principles Calculations. Costanzo F; Silvestrelli PL; Ancilotto F J Chem Theory Comput; 2012 Apr; 8(4):1288-94. PubMed ID: 26596745 [TBL] [Abstract][Full Text] [Related]
5. Single-Crystal Graphene-Directed van der Waals Epitaxial Resistive Switching. Sun X; Lu Z; Chen Z; Wang Y; Shi J; Washington M; Lu TM ACS Appl Mater Interfaces; 2018 Feb; 10(7):6730-6736. PubMed ID: 29368515 [TBL] [Abstract][Full Text] [Related]
6. Lattice theory of competitive binding: Influence of van der Waals interactions on molecular binding and adsorption to a solid substrate from binary liquid mixtures. Dudowicz J; Douglas JF; Freed KF J Chem Phys; 2018 Jul; 149(4):044704. PubMed ID: 30068175 [TBL] [Abstract][Full Text] [Related]
7. Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions. McKenzie S; Kang HC Phys Chem Chem Phys; 2014 Dec; 16(47):26004-15. PubMed ID: 25356833 [TBL] [Abstract][Full Text] [Related]
8. All-Dry Transfer of Graphene Film by van der Waals Interactions. Yang SJ; Choi S; Odongo Ngome FO; Kim KJ; Choi SY; Kim CJ Nano Lett; 2019 Jun; 19(6):3590-3596. PubMed ID: 31082260 [TBL] [Abstract][Full Text] [Related]
9. Enhancing Van der Waals Interactions of Functionalized UiO-66 with Non-polar Adsorbates: The Unique Effect of para Hydroxyl Groups. Tovar TM; Iordanov I; Sava Gallis DF; DeCoste JB Chemistry; 2018 Feb; 24(8):1931-1937. PubMed ID: 29227560 [TBL] [Abstract][Full Text] [Related]
10. Beyond van der Waals Interaction: The Case of MoSe Dau MT; Gay M; Di Felice D; Vergnaud C; Marty A; Beigné C; Renaud G; Renault O; Mallet P; Le Quang T; Veuillen JY; Huder L; Renard VT; Chapelier C; Zamborlini G; Jugovac M; Feyer V; Dappe YJ; Pochet P; Jamet M ACS Nano; 2018 Mar; 12(3):2319-2331. PubMed ID: 29384649 [TBL] [Abstract][Full Text] [Related]
11. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy. Lee J; Varshney V; Park J; Farmer BL; Roy AK Nanoscale; 2016 May; 8(18):9704-13. PubMed ID: 27108606 [TBL] [Abstract][Full Text] [Related]
12. Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures. Heilmann M; Prikhodko AS; Hanke M; Sabelfeld A; Borgardt NI; Lopes JMJ ACS Appl Mater Interfaces; 2020 Feb; 12(7):8897-8907. PubMed ID: 31971775 [TBL] [Abstract][Full Text] [Related]
13. A van der Waals density functional study of chloroform and other trihalomethanes on graphene. Åkesson J; Sundborg O; Wahlström O; Schröder E J Chem Phys; 2012 Nov; 137(17):174702. PubMed ID: 23145737 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of dihalogen molecules on pristine graphene surface: Monte Carlo and molecular dynamics simulation studies. Sütay B; Yurtsever M J Mol Model; 2017 May; 23(5):150. PubMed ID: 28374215 [TBL] [Abstract][Full Text] [Related]
15. Role of directed van der Waals bonded interactions in the determination of the structures of molecular arsenate solids. Gibbs GV; Wallace AF; Cox DF; Dove PM; Downs RT; Ross NL; Rosso KM J Phys Chem A; 2009 Jan; 113(4):736-49. PubMed ID: 19123777 [TBL] [Abstract][Full Text] [Related]
16. van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene. Sun X; Lu Z; Xiang Y; Wang Y; Shi J; Wang GC; Washington MA; Lu TM ACS Nano; 2018 Jun; 12(6):6100-6108. PubMed ID: 29746775 [TBL] [Abstract][Full Text] [Related]
17. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure. Sediri H; Pierucci D; Hajlaoui M; Henck H; Patriarche G; Dappe YJ; Yuan S; Toury B; Belkhou R; Silly MG; Sirotti F; Boutchich M; Ouerghi A Sci Rep; 2015 Nov; 5():16465. PubMed ID: 26585245 [TBL] [Abstract][Full Text] [Related]
18. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy. Zuo Z; Xu Z; Zheng R; Khanaki A; Zheng JG; Liu J Sci Rep; 2015 Oct; 5():14760. PubMed ID: 26442629 [TBL] [Abstract][Full Text] [Related]
19. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Kim Y; Cruz SS; Lee K; Alawode BO; Choi C; Song Y; Johnson JM; Heidelberger C; Kong W; Choi S; Qiao K; Almansouri I; Fitzgerald EA; Kong J; Kolpak AM; Hwang J; Kim J Nature; 2017 Apr; 544(7650):340-343. PubMed ID: 28426001 [TBL] [Abstract][Full Text] [Related]
20. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum. Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]