These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 31589413)
1. A Heme Propionate Staples the Structure of Cytochrome Deng Y; Weaver ML; Hoke KR; Pletneva EV Inorg Chem; 2019 Oct; 58(20):14085-14106. PubMed ID: 31589413 [TBL] [Abstract][Full Text] [Related]
2. Ligation and Reactivity of Methionine-Oxidized Cytochrome c. Zhong F; Pletneva EV Inorg Chem; 2018 May; 57(10):5754-5766. PubMed ID: 29708337 [TBL] [Abstract][Full Text] [Related]
3. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c. Gu J; Shin DW; Pletneva EV Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881 [TBL] [Abstract][Full Text] [Related]
4. Naturally Occurring Disease-Related Mutations in the 40-57 Ω-Loop of Human Cytochrome c Control Triggering of the Alkaline Isomerization. Deacon OM; Svistunenko DA; Moore GR; Wilson MT; Worrall JAR Biochemistry; 2018 Jul; 57(29):4276-4288. PubMed ID: 29949346 [TBL] [Abstract][Full Text] [Related]
5. Comparing Properties of Common Bioinorganic Ligands with Switchable Variants of Cytochrome Zhong F; Alden SL; Hughes RP; Pletneva EV Inorg Chem; 2022 Jan; 61(3):1207-1227. PubMed ID: 34699724 [TBL] [Abstract][Full Text] [Related]
6. Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption. Nuclear magnetic resonance and optical spectroscopy studies. Abriata LA; Cassina A; Tórtora V; Marín M; Souza JM; Castro L; Vila AJ; Radi R J Biol Chem; 2009 Jan; 284(1):17-26. PubMed ID: 18974097 [TBL] [Abstract][Full Text] [Related]
7. Histidine-Lysine Axial Ligand Switching in a Hemoglobin: A Role for Heme Propionates. Nye DB; Preimesberger MR; Majumdar A; Lecomte JTJ Biochemistry; 2018 Feb; 57(5):631-644. PubMed ID: 29271191 [TBL] [Abstract][Full Text] [Related]
8. A Compact Structure of Cytochrome c Trapped in a Lysine-Ligated State: Loop Refolding and Functional Implications of a Conformational Switch. Amacher JF; Zhong F; Lisi GP; Zhu MQ; Alden SL; Hoke KR; Madden DR; Pletneva EV J Am Chem Soc; 2015 Jul; 137(26):8435-49. PubMed ID: 26038984 [TBL] [Abstract][Full Text] [Related]
9. The K79G Mutation Reshapes the Heme Crevice and Alters Redox Properties of Cytochrome c. Deng Y; Zhong F; Alden SL; Hoke KR; Pletneva EV Biochemistry; 2018 Oct; 57(40):5827-5840. PubMed ID: 30142276 [TBL] [Abstract][Full Text] [Related]
10. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions. Barker PD; Freund SM Biochemistry; 1996 Oct; 35(42):13627-35. PubMed ID: 8885842 [TBL] [Abstract][Full Text] [Related]
11. Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met-heme iron bond. Wang Z; Ando Y; Nugraheni AD; Ren C; Nagao S; Hirota S Mol Biosyst; 2014 Dec; 10(12):3130-7. PubMed ID: 25224641 [TBL] [Abstract][Full Text] [Related]
12. The 40s Omega-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c. Caroppi P; Sinibaldi F; Santoni E; Howes BD; Fiorucci L; Ferri T; Ascoli F; Smulevich G; Santucci R J Biol Inorg Chem; 2004 Dec; 9(8):997-1006. PubMed ID: 15503233 [TBL] [Abstract][Full Text] [Related]
13. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states. Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066 [TBL] [Abstract][Full Text] [Related]
14. Perturbation of the redox site structure of cytochrome c variants upon tyrosine nitration. Ly HK; Utesch T; Díaz-Moreno I; García-Heredia JM; De La Rosa MÁ; Hildebrandt P J Phys Chem B; 2012 May; 116(19):5694-702. PubMed ID: 22540335 [TBL] [Abstract][Full Text] [Related]
15. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide. Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043 [TBL] [Abstract][Full Text] [Related]
16. Effect of methionine80 heme coordination on domain swapping of cytochrome c. Hirota S; Yamashiro N; Wang Z; Nagao S J Biol Inorg Chem; 2017 Jul; 22(5):705-712. PubMed ID: 28246923 [TBL] [Abstract][Full Text] [Related]
17. Redox-dependent stability, protonation, and reactivity of cysteine-bound heme proteins. Zhong F; Lisi GP; Collins DP; Dawson JH; Pletneva EV Proc Natl Acad Sci U S A; 2014 Jan; 111(3):E306-15. PubMed ID: 24398520 [TBL] [Abstract][Full Text] [Related]
18. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy. Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612 [TBL] [Abstract][Full Text] [Related]
19. The Met80Ala and Tyr67His/Met80Ala mutants of human cytochrome c shed light on the reciprocal role of Met80 and Tyr67 in regulating ligand access into the heme pocket. Ciaccio C; Tognaccini L; Battista T; Cervelli M; Howes BD; Santucci R; Coletta M; Mariottini P; Smulevich G; Fiorucci L J Inorg Biochem; 2017 Apr; 169():86-96. PubMed ID: 28161681 [TBL] [Abstract][Full Text] [Related]
20. pH-dependent equilibria of yeast Met80Ala-iso-1-cytochrome c probed by NMR spectroscopy: a comparison with the wild-type protein. Banci L; Bertini I; Bren KL; Gray HB; Turano P Chem Biol; 1995 Jun; 2(6):377-83. PubMed ID: 9383439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]