These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 31589422)
1. STarFish: A Stacked Ensemble Target Fishing Approach and its Application to Natural Products. Cockroft NT; Cheng X; Fuchs JR J Chem Inf Model; 2019 Nov; 59(11):4906-4920. PubMed ID: 31589422 [TBL] [Abstract][Full Text] [Related]
2. Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach. Egieyeh S; Syce J; Malan SF; Christoffels A PLoS One; 2018; 13(9):e0204644. PubMed ID: 30265702 [TBL] [Abstract][Full Text] [Related]
3. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach. Ambure P; Bhat J; Puzyn T; Roy K J Biomol Struct Dyn; 2019 Mar; 37(5):1282-1306. PubMed ID: 29578387 [TBL] [Abstract][Full Text] [Related]
4. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery. Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717 [TBL] [Abstract][Full Text] [Related]
5. Target Prediction Model for Natural Products Using Transfer Learning. Qiang B; Lai J; Jin H; Zhang L; Liu Z Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33924898 [TBL] [Abstract][Full Text] [Related]
6. NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules. Chen Y; Stork C; Hirte S; Kirchmair J Biomolecules; 2019 Jan; 9(2):. PubMed ID: 30682850 [TBL] [Abstract][Full Text] [Related]
7. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach. Niu AQ; Xie LJ; Wang H; Zhu B; Wang SQ Drug Des Devel Ther; 2016; 10():2323-31. PubMed ID: 27486309 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of stacked ensemble model performance to predict clinical outcomes: A COVID-19 study. Kablan R; Miller HA; Suliman S; Frieboes HB Int J Med Inform; 2023 Jul; 175():105090. PubMed ID: 37172507 [TBL] [Abstract][Full Text] [Related]
9. Public databases of plant natural products for computational drug discovery. Tung CW Curr Comput Aided Drug Des; 2014; 10(3):191-6. PubMed ID: 24724941 [TBL] [Abstract][Full Text] [Related]
10. A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Dias T; Gaudêncio SP; Pereira F Mar Drugs; 2018 Dec; 17(1):. PubMed ID: 30597893 [TBL] [Abstract][Full Text] [Related]
11. Screening techniques for the identification of bioactive compounds in natural products. Fu Y; Luo J; Qin J; Yang M J Pharm Biomed Anal; 2019 May; 168():189-200. PubMed ID: 30825802 [TBL] [Abstract][Full Text] [Related]
12. Identify Compounds' Target Against Alzheimer's Disease Based on In-Silico Approach. Hu Y; Zhou G; Zhang C; Zhang M; Chen Q; Zheng L; Niu B Curr Alzheimer Res; 2019; 16(3):193-208. PubMed ID: 30605059 [TBL] [Abstract][Full Text] [Related]
13. Machine learning prediction of oncology drug targets based on protein and network properties. Dezső Z; Ceccarelli M BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238 [TBL] [Abstract][Full Text] [Related]
14. Machine learning approaches for elucidating the biological effects of natural products. Zhang R; Li X; Zhang X; Qin H; Xiao W Nat Prod Rep; 2021 Mar; 38(2):346-361. PubMed ID: 32869826 [TBL] [Abstract][Full Text] [Related]
15. PTML Combinatorial Model of ChEMBL Compounds Assays for Multiple Types of Cancer. Bediaga H; Arrasate S; González-Díaz H ACS Comb Sci; 2018 Nov; 20(11):621-632. PubMed ID: 30240186 [TBL] [Abstract][Full Text] [Related]
16. A comparison of machine learning and logistic regression in modelling the association of body condition score and submission rate. Bates AJ; Saldias B Prev Vet Med; 2019 Nov; 171():104765. PubMed ID: 31499454 [TBL] [Abstract][Full Text] [Related]
17. Exploring Natural Products from the Biodiversity of Pakistan for Computational Drug Discovery Studies: Collection, Optimization, Design and Development of A Chemical Database (ChemDP). Mirza SB; Bokhari H; Fatmi MQ Curr Comput Aided Drug Des; 2015; 11(2):102-9. PubMed ID: 26343150 [TBL] [Abstract][Full Text] [Related]
18. Cheminformatics to Characterize Pharmacologically Active Natural Products. Medina-Franco JL; Saldívar-González FI Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33213003 [TBL] [Abstract][Full Text] [Related]
19. A new ChEMBL dataset for the similarity-based target fishing engine FastTargetPred: Annotation of an exhaustive list of linear tetrapeptides. Tanwar S; Auberger P; Gillet G; DiPaola M; Tsaioun K; Villoutreix BO Data Brief; 2022 Jun; 42():108159. PubMed ID: 35496477 [TBL] [Abstract][Full Text] [Related]
20. MOST: most-similar ligand based approach to target prediction. Huang T; Mi H; Lin CY; Zhao L; Zhong LL; Liu FB; Zhang G; Lu AP; Bian ZX; BMC Bioinformatics; 2017 Mar; 18(1):165. PubMed ID: 28284192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]