These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31589670)

  • 1. Evaluating Management Implications of the New York Phosphorus Index with Farm Field Information.
    Ros MBH; Ketterings QM; Cela S; Czymmek KJ
    J Environ Qual; 2019 Jul; 48(4):1082-1090. PubMed ID: 31589670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining field phosphorus runoff risk assessments with whole-farm phosphorus balances to guide manure management decisions.
    Ros MBH; Czymmek KJ; Ketterings QM
    J Environ Qual; 2020 Mar; 49(2):496-508. PubMed ID: 33016424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restructuring the P Index to Better Address P Management in New York.
    Ketterings QM; Cela S; Collick AS; Crittenden SJ; Czymmek KJ
    J Environ Qual; 2017 Nov; 46(6):1372-1379. PubMed ID: 29293840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus index as a phosphorus awareness tool: documented phosphorus use reduction in New York state.
    Ketterings QM; Czymmek KJ
    J Environ Qual; 2012; 41(6):1767-73. PubMed ID: 23128734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of nitrogen, phosphorus, and potassium mass balances of dairy farms in New York State.
    Cela S; Ketterings QM; Czymmek K; Soberon M; Rasmussen C
    J Dairy Sci; 2014 Dec; 97(12):7614-32. PubMed ID: 25468709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal variability in costs and effectiveness in phosphorus loss mitigation at farm scale: A scenario analysis.
    Bragina L; Micha E; Roberts WM; O'Connell K; O'Donoghue C; Ryan M; Daly K
    J Environ Manage; 2019 Sep; 245():330-337. PubMed ID: 31158685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Economic analysis of best management practices to reduce watershed phosphorus losses.
    Rao NS; Easton ZM; Lee DR; Steenhuis TS
    J Environ Qual; 2012; 41(3):855-64. PubMed ID: 22565267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading.
    Rao NS; Easton ZM; Schneiderman EM; Zion MS; Lee DR; Steenhuis TS
    J Environ Manage; 2009 Mar; 90(3):1385-95. PubMed ID: 19008034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the risk of phosphorus transfer to high ecological status rivers: Integration of nutrient management with soil geochemical and hydrological conditions.
    Roberts WM; Gonzalez-Jimenez JL; Doody DG; Jordan P; Daly K
    Sci Total Environ; 2017 Jul; 589():25-35. PubMed ID: 28259833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate analysis of paired watershed data to evaluate agricultural best management practice effects on stream water phosphorus.
    Bishop PL; Hively WD; Stedinger JR; Rafferty MR; Lojpersberger JL; Bloomfield JA
    J Environ Qual; 2005; 34(3):1087-101. PubMed ID: 15888895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Variation in Agricultural BMPs and Relationships with Nutrient Yields Across New York State Watersheds.
    Schewe R; Iavorivska L; Kelleher C
    Environ Manage; 2024 Oct; 74(4):729-741. PubMed ID: 38955869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(6):2112-7. PubMed ID: 16275711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling through-soil transport of phosphorus to surface waters from livestock agriculture at the field and catchment scale.
    McGechan MB; Lewis DR; Hooda PS
    Sci Total Environ; 2005 May; 344(1-3):185-99. PubMed ID: 15907517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edge-Of-Field Evaluation of the Ohio Phosphorus Risk Index.
    Williams MR; King KW; LaBarge GA; Confesor RB; Fausey NR
    J Environ Qual; 2017 Nov; 46(6):1306-1313. PubMed ID: 29293845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.
    Geng R; Wang X; Sharpley AN; Meng F
    PLoS One; 2015; 10(8):e0130607. PubMed ID: 26313561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Simulation of Edaphic and Manure Phosphorus Loss in SWAT.
    Collick AS; Veith TL; Fuka DR; Kleinman PJ; Buda AR; Weld JL; Bryant RB; Vadas PA; White MJ; Harmel RD; Easton ZM
    J Environ Qual; 2016 Jul; 45(4):1215-25. PubMed ID: 27380069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing field vulnerability to phosphorus loss in Beijing agricultural area using Revised Field Phosphorus Ranking Scheme.
    Li Q; Chen LD; Qi X; Zhang XY; Ma Y; Fu BJ
    J Environ Sci (China); 2007; 19(8):977-85. PubMed ID: 17966855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing phosphorus runoff from dairy farms.
    Bosch DJ; Wolfe ML; Knowlton KF
    J Environ Qual; 2006; 35(3):918-27. PubMed ID: 16641330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the phosphorus source component in the phosphorus index for pastures.
    DeLaune PB; Moore PA; Carman DK; Sharpley AN; Haggard BE; Daniel TC
    J Environ Qual; 2004; 33(6):2192-200. PubMed ID: 15537942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decision support system for phosphorus management at a watershed scale.
    Djodjic F; Montas H; Shirmohammadi A; Bergström L; Ulén B
    J Environ Qual; 2002; 31(3):937-45. PubMed ID: 12026098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.