These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31589676)

  • 1. A Systems Approach to Modeling Watershed Ecohydrology and Pesticide Transport.
    Janney P; Jenkins J
    J Environ Qual; 2019 Jul; 48(4):1047-1056. PubMed ID: 31589676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive sampling and ecohydrologic modeling to investigate pesticide surface water loading in the Zollner Creek watershed, Oregon, USA.
    Janney P; Jenkins J
    Sci Total Environ; 2022 May; 819():152955. PubMed ID: 35007592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling field-scale and watershed models for regulatory modeling of pesticide aquatic exposures in streams.
    Ghebremichael L; Chen W; Jacobson A; Roy C; Perkins DB; Brain R
    Integr Environ Assess Manag; 2022 Nov; 18(6):1678-1693. PubMed ID: 35212130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.
    Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H
    Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).
    Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.
    Luo Y; Zhang M
    Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
    Larose M; Heathman GC; Norton LD; Engel B
    J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling spray drift and runoff-related inputs of pesticides to receiving water.
    Zhang X; Luo Y; Goh KS
    Environ Pollut; 2018 Mar; 234():48-58. PubMed ID: 29156441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California.
    Luo Y; Zhang X; Liu X; Ficklin D; Zhang M
    Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of risks to listed species from the use of atrazine in the USA: a perspective.
    Smith PN; Armbrust KL; Brain RA; Chen W; Galic N; Ghebremichael L; Giddings JM; Hanson ML; Maul J; Van Der Kraak G; Solomon KR
    J Toxicol Environ Health B Crit Rev; 2021 Aug; 24(6):223-306. PubMed ID: 34219616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled modeling using PRZM/RICEWQ and SWAT for the North Tiaoxi Watershed.
    Cheng Y; Zhou J; Liao J; Mao D; Chen W; Shan Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12635-12645. PubMed ID: 32006327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands.
    Li YR; Huang GH; Li YF; Struger J; Fischer JD
    Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PeLM: modeling of pesticide-losses through runoff and sediment transport.
    Chen B; Li Y; Huang GH; Huang Y; Li Y
    J Environ Sci Health B; 2004 May; 39(4):613-26. PubMed ID: 15473641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of water quality in an agricultural watershed as affected by almond pest management practices.
    Zhang X; Liu X; Luo Y; Zhang M
    Water Res; 2008 Aug; 42(14):3685-96. PubMed ID: 18672261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.
    Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ
    J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of agricultural pesticide inert ingredient transport following modeling approach: Case study of two formulation agents in Sacramento River watershed.
    Tu LH; Grieneisen ML; Wang R; Watanabe H; Zhang M
    J Environ Manage; 2023 Mar; 330():117123. PubMed ID: 36586371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed.
    Luo Y; Zhang M
    J Environ Qual; 2009; 38(2):664-74. PubMed ID: 19244487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet.
    Sommerlot AR; Pouyan Nejadhashemi A; Woznicki SA; Prohaska MD
    J Environ Manage; 2013 Oct; 128():735-48. PubMed ID: 23851319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff.
    Zhang X; Zhang M
    Sci Total Environ; 2011 Apr; 409(10):1949-58. PubMed ID: 21377192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.