These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31589676)

  • 21. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed.
    Teshager AD; Gassman PW; Secchi S; Schoof JT
    Sci Total Environ; 2017 Dec; 607-608():1188-1200. PubMed ID: 28732398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects.
    Bannwarth MA; Grovermann C; Schreinemachers P; Ingwersen J; Lamers M; Berger T; Streck T
    J Environ Manage; 2016 Jan; 165():298-312. PubMed ID: 26431614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT.
    Chen H; Luo Y; Potter C; Moran PJ; Grieneisen ML; Zhang M
    Water Res; 2017 Sep; 121():374-385. PubMed ID: 28577487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants.
    Chiovarou ED; Siewicki TC
    Sci Total Environ; 2008 Jan; 389(1):87-100. PubMed ID: 17904201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed.
    Chiu MC; Hunt L; Resh VH
    Sci Total Environ; 2017 Mar; 581-582():741-749. PubMed ID: 28069310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling sediment and nitrogen export from a rural watershed in eastern Canada using the soil and water assessment tool.
    Nafees Ahmad HM; Sinclair A; Jamieson R; Madani A; Hebb D; Havard P; Yiridoe EK
    J Environ Qual; 2011; 40(4):1182-94. PubMed ID: 21712588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.
    Qiu J; Shen Z; Wei G; Wang G; Xie H; Lv G
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6514-6531. PubMed ID: 29255977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of a turfgrass sod best management practice on water quality in a suburban watershed.
    Richards CE; Munster CL; Vietor DM; Arnold JG; White R
    J Environ Manage; 2008 Jan; 86(1):229-45. PubMed ID: 17298864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling fate and transport of pesticides from dryland agriculture using SWAT model.
    Dogan FN; Karpuzcu ME
    J Environ Manage; 2023 May; 334():117457. PubMed ID: 36801806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pesticide runoff model (PeRM): a case study for the Kintore Creek Watershed, Ontario, Canada.
    Li YR; Li YF; Struger J; Chen B; Huang GH
    J Environ Sci Health B; 2003 May; 38(3):257-73. PubMed ID: 12716044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Typical pesticides diffuse loading and degradation pattern differences under the impacts of climate and land-use variations.
    Ouyang W; Hao X; Tysklind M; Yang W; Lin C; Wang A
    Environ Int; 2020 Jun; 139():105717. PubMed ID: 32283357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.
    Wu Y; Liu S
    J Environ Monit; 2012 Sep; 14(9):2350-61. PubMed ID: 22790209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chesapeake Bay watershed pesticide use declines but toxicity increases.
    Hartwell SI
    Environ Toxicol Chem; 2011 May; 30(5):1223-31. PubMed ID: 21312252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns.
    Wang R; Yuan Y; Yen H; Grieneisen M; Arnold J; Wang D; Wang C; Zhang M
    Sci Total Environ; 2019 Jun; 669():512-526. PubMed ID: 30884273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pesticide fate at watershed scale: A new framework integrating multimedia behavior with hydrological processes.
    Yan X; Zhang Z; Chen L; Jiao C; Zhu K; Guo J; Pang M; Jin Z; Shen Z
    J Environ Manage; 2022 Oct; 319():115758. PubMed ID: 35982562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing dependence of pesticide load in surface water on precipitation and pesticide use for the Sacramento River watershed.
    Guo L; Nordmark CE; Spurlock FC; Johnson BR; Li L; Lee JM; Goh KS
    Environ Sci Technol; 2004 Jul; 38(14):3842-52. PubMed ID: 15298191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.
    Niazi M; Obropta C; Miskewitz R
    J Environ Manage; 2015 Mar; 151():167-77. PubMed ID: 25576694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using detailed monitoring data to simulate spatial sediment loading in a watershed.
    Mukundan R; Pierson DC; Schneiderman EM; Zion MS
    Environ Monit Assess; 2015 Aug; 187(8):532. PubMed ID: 26215828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: A case study from the Sacramento River watershed, California.
    Chiu MC; Hunt L; Resh VH
    Environ Pollut; 2016 Dec; 219():89-98. PubMed ID: 27744143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Emission Estimation and Fate Simulation of Dichlorvos in the Dongjiang River Watershed].
    Zhang B; Zhang QQ; Ying GG
    Huan Jing Ke Xue; 2021 Jan; 42(1):127-135. PubMed ID: 33372464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.