These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31589695)

  • 1. Seasonal Variation in Sediment and Phosphorus Yields in Four Wisconsin Agricultural Watersheds.
    Good LW; Carvin R; Lamba J; Fitzpatrick FA
    J Environ Qual; 2019 Jul; 48(4):950-958. PubMed ID: 31589695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Export of non-point source suspended sediment, nitrogen, and phosphorus from sloping highland agricultural fields in the East Asian monsoon region.
    Reza A; Eum J; Jung S; Choi Y; Owen JS; Kim B
    Environ Monit Assess; 2016 Dec; 188(12):692. PubMed ID: 27888424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed.
    Waller DM; Meyer AG; Raff Z; Apfelbaum SI
    J Environ Manage; 2021 Apr; 284():112019. PubMed ID: 33540198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus loss and runoff characteristics in three adjacent agricultural watersheds with claypan soils.
    Udawatta RP; Motavalli PP; Garrett HE
    J Environ Qual; 2004; 33(5):1709-19. PubMed ID: 15356231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.
    Gentry LE; David MB; Royer TV; Mitchell CA; Starks KM
    J Environ Qual; 2007; 36(2):408-15. PubMed ID: 17255628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrological and Seasonal Controls of Phosphorus in Northern Great Plains Agricultural Streams.
    Casson NJ; Wilson HF; Higgins SM
    J Environ Qual; 2019 Jul; 48(4):978-987. PubMed ID: 31589677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TMDL for phosphorus and contributing factors in subtropical watersheds of southern China.
    Meng C; Li Y; Wang Y; Yang W; Jiao J; Wang M; Zhang M; Li Y; Wu J
    Environ Monit Assess; 2015 Aug; 187(8):514. PubMed ID: 26202816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term Variation in Agricultural Edge-of-Field Phosphorus Transport during Snowmelt, Rain, and Mixed Runoff Events.
    Hoffman AR; Polebitski AS; Penn MR; Busch DL
    J Environ Qual; 2019 Jul; 48(4):931-940. PubMed ID: 31589667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conventional and conservation tillage: influence on seasonal runoff, sediment, and nutrient losses in the Canadian Prairies.
    Tiessen KH; Elliott JA; Yarotski J; Lobb DA; Flaten DN; Glozier NE
    J Environ Qual; 2010; 39(3):964-80. PubMed ID: 20400592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particulate phosphorus transport within stream flow of an agricultural catchment.
    McDowell RW; Wilcock RJ
    J Environ Qual; 2004; 33(6):2111-21. PubMed ID: 15537933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus losses from agricultural watersheds in the Mississippi Delta.
    Yuan Y; Locke MA; Bingner RL; Rebich RA
    J Environ Manage; 2013 Jan; 115():14-20. PubMed ID: 23220653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA.
    Jabbar FK; Grote K
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1487-1506. PubMed ID: 30430446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal Efficacy of Vegetated Filter Strips for Phosphorus Reduction in Surface Runoff.
    Vanrobaeys JA; Owens PN; Lobb DA; Kieta KA; Campbell JM
    J Environ Qual; 2019 Jul; 48(4):880-888. PubMed ID: 31589680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. At-grade stabilization structure impact on surface water quality of an agricultural watershed.
    Minks KR; Ruark MD; Lowery B; Madison FW; Frame D; Stuntebeck TD; Komiskey MJ; Kraft GJ
    J Environ Manage; 2015 Apr; 153():50-9. PubMed ID: 25657061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus reductions following riparian restoration in two agricultural watersheds in Vermont, USA.
    Meals DW; Hopkins RB
    Water Sci Technol; 2002; 45(9):51-60. PubMed ID: 12079124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Runoff losses of suspended sediment, nitrogen, and phosphorus from a small watershed in Korea.
    Chun JA; Cooke RA; Kang MS; Choi M; Timlin D; Park SW
    J Environ Qual; 2010; 39(3):981-90. PubMed ID: 20400593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus loss from an agricultural watershed as a function of storm size.
    Sharpley AN; Kleinman PJ; Heathwaite AL; Gburek WJ; Folmar GJ; Schmidt JP
    J Environ Qual; 2008; 37(2):362-8. PubMed ID: 18268298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010.
    Duan W; Takara K; He B; Luo P; Nover D; Yamashiki Y
    Sci Total Environ; 2013 Sep; 461-462():499-508. PubMed ID: 23751333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First flush characteristics of rainfall runoff from a paddy field in the Taihu Lake watershed, China.
    Li S; Wang X; Qiao B; Li J; Tu J
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8336-8351. PubMed ID: 28168564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.