BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31589831)

  • 1. Exogenous carnitine application augments transport of fatty acids into mitochondria and stimulates mitochondrial respiration in maize seedlings grown under normal and cold conditions.
    Turk H; Erdal S; Dumlupinar R
    Cryobiology; 2019 Dec; 91():97-103. PubMed ID: 31589831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melatonin-related mitochondrial respiration responses are associated with growth promotion and cold tolerance in plants.
    Turk H; Genisel M
    Cryobiology; 2020 Feb; 92():76-85. PubMed ID: 31758919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: structure-activity relationships.
    Tune BM; Hsu CY
    J Pharmacol Exp Ther; 1994 Sep; 270(3):873-80. PubMed ID: 7932199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of methylglyoxal bis(guanylhydrazone) on hepatic, heart and skeletal muscle mitochondrial carnitine palmitoyltransferase and beta-oxidation of fatty acids.
    Brady LJ; Brady PS; Gandour RD
    Biochem Pharmacol; 1987 Feb; 36(4):447-52. PubMed ID: 3827937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation.
    Bezaire V; Spriet LL; Campbell S; Sabet N; Gerrits M; Bonen A; Harper ME
    FASEB J; 2005 Jun; 19(8):977-9. PubMed ID: 15814607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat.
    Harper RD; Saggerson ED
    Biochem J; 1975 Dec; 152(3):485-94. PubMed ID: 1227502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carnitine--metabolism and functions.
    Bremer J
    Physiol Rev; 1983 Oct; 63(4):1420-80. PubMed ID: 6361812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid import into mitochondria.
    Kerner J; Hoppel C
    Biochim Biophys Acta; 2000 Jun; 1486(1):1-17. PubMed ID: 10856709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of carnitine in intracellular metabolism.
    Bremer J
    J Clin Chem Clin Biochem; 1990 May; 28(5):297-301. PubMed ID: 2199593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs.
    Schmidt I; Herpin P
    J Nutr; 1998 May; 128(5):886-93. PubMed ID: 9566999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis.
    Hoppel CL
    Fed Proc; 1982 Oct; 41(12):2853-7. PubMed ID: 7128831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise?
    Gnoni A; Longo S; Gnoni GV; Giudetti AM
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31906370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of the mechanism by which (+)-acylcarnitines inhibit mitochondrial fatty acid transport.
    Baillet L; Mullur RS; Esser V; McGarry JD
    J Biol Chem; 2000 Nov; 275(47):36766-8. PubMed ID: 10986294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise.
    Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism.
    Houten SM; Wanders RJA; Ranea-Robles P
    Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165720. PubMed ID: 32057943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular in vitro probe acylcarnitine assay for identifying deficiencies of carnitine transporter and carnitine palmitoyltransferase-1.
    Purevsuren J; Kobayashi H; Hasegawa Y; Yamada K; Takahashi T; Takayanagi M; Fukao T; Fukuda S; Yamaguchi S
    Anal Bioanal Chem; 2013 Feb; 405(4):1345-51. PubMed ID: 23143007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient.
    Violante S; Ijlst L; Te Brinke H; Koster J; Tavares de Almeida I; Wanders RJ; Ventura FV; Houten SM
    Biochim Biophys Acta; 2013 Sep; 1831(9):1467-74. PubMed ID: 23850792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defects in activation and transport of fatty acids.
    Brivet M; Boutron A; Slama A; Costa C; Thuillier L; Demaugre F; Rabier D; Saudubray JM; Bonnefont JP
    J Inherit Metab Dis; 1999 Jun; 22(4):428-41. PubMed ID: 10407779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preeclampsia and HELLP syndrome: impaired mitochondrial function in umbilical endothelial cells.
    Illsinger S; Janzen N; Sander S; Schmidt KH; Bednarczyk J; Mallunat L; Bode J; Hagebölling F; Hoy L; Lücke T; Hass R; Das AM
    Reprod Sci; 2010 Mar; 17(3):219-26. PubMed ID: 20065299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.