BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31589841)

  • 1. HSP90 as a novel therapeutic target for posterior capsule opacification.
    Li J; Xue W; Wang X; Huang W; Wang XX; Li H; Cui X; Li M; Mu H; Ren Y; Zhang F; Hu Y
    Exp Eye Res; 2019 Dec; 189():107821. PubMed ID: 31589841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implication of Smad2 and Smad3 in transforming growth factor-β-induced posterior capsular opacification of human lens epithelial cells.
    Li H; Yuan X; Li J; Tang X
    Curr Eye Res; 2015 Apr; 40(4):386-97. PubMed ID: 24911914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-34a inhibits epithelial-mesenchymal transition of lens epithelial cells by targeting Notch1.
    Han R; Hao P; Wang L; Li J; Shui S; Wang Y; Ying M; Liu J; Tang X; Li X
    Exp Eye Res; 2019 Aug; 185():107684. PubMed ID: 31158382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FILIP1L-mediated cell apoptosis, epithelial-mesenchymal transition and extracellular matrix synthesis aggravate posterior capsular opacification.
    Jing R; Hu C; Qi T; Yue J; Wang G; Zhang M; Wen C; Pei C; Ma B
    Life Sci; 2021 Dec; 286():120061. PubMed ID: 34666037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resveratrol Inhibits Wound Healing and Lens Fibrosis: A Putative Candidate for Posterior Capsule Opacification Prevention.
    Smith AJO; Eldred JA; Wormstone IM
    Invest Ophthalmol Vis Sci; 2019 Sep; 60(12):3863-3877. PubMed ID: 31529119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Interleukin-6 on posterior capsular opacification.
    Ma B; Yang L; Jing R; Liu J; Quan Y; Hui Q; Li J; Qin L; Pei C
    Exp Eye Res; 2018 Jul; 172():94-103. PubMed ID: 29617629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SiRNA targeting EGFR effectively prevents posterior capsular opacification after cataract surgery.
    Huang WR; Fan XX; Tang X
    Mol Vis; 2011; 17():2349-55. PubMed ID: 21921987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-30a reverses TGF-β2-induced migration and EMT in posterior capsular opacification by targeting Smad2.
    Li H; Song H; Yuan X; Li J; Tang H
    Mol Biol Rep; 2019 Aug; 46(4):3899-3907. PubMed ID: 31049834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the fibronectin type III repeats in tenascin-C inhibits epithelial-mesenchymal transition in the context of posterior capsular opacification.
    Tiwari A; Ram J; Luthra-Guptasarma M
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):272-83. PubMed ID: 25515583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EGFR inhibitor Gefitinib attenuates posterior capsule opacification in vitro and in the ex vivo human capsular bag model.
    Wertheimer C; Siedlecki J; Kook D; Mayer WJ; Wolf A; Klingenstein A; Kampik A; Eibl-Lindner K
    Graefes Arch Clin Exp Ophthalmol; 2015 Mar; 253(3):409-17. PubMed ID: 25471020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gremlin is a potential target for posterior capsular opacification.
    Ma B; Jing R; Liu J; Qi T; Pei C
    Cell Cycle; 2019 Aug; 18(15):1714-1726. PubMed ID: 31234714
    [No Abstract]   [Full Text] [Related]  

  • 12. Prevention of posterior capsular opacification.
    Nibourg LM; Gelens E; Kuijer R; Hooymans JM; van Kooten TG; Koopmans SA
    Exp Eye Res; 2015 Jul; 136():100-15. PubMed ID: 25783492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metformin attenuates the epithelial-mesenchymal transition of lens epithelial cells through the AMPK/TGF-β/Smad2/3 signalling pathway.
    Wang L; Tian Y; Shang Z; Zhang B; Hua X; Yuan X
    Exp Eye Res; 2021 Nov; 212():108763. PubMed ID: 34517004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bit1-a potential positive regulator of epithelial-mesenchymal transition in lens epithelial cells.
    Wu X; Ruan J; Ma B; Luo M
    Graefes Arch Clin Exp Ophthalmol; 2016 Jul; 254(7):1311-8. PubMed ID: 27122244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aldose Reductase Mediates Transforming Growth Factor β2 (TGF-β2)-Induced Migration and Epithelial-To-Mesenchymal Transition of Lens-Derived Epithelial Cells.
    Chang KC; Petrash JM
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4198-210. PubMed ID: 26132779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Killing two birds with one stone: dual blockade of integrin and FGF signaling through targeting syndecan-4 in postoperative capsular opacification.
    Qin Y; Zhu Y; Luo F; Chen C; Chen X; Wu M
    Cell Death Dis; 2017 Jul; 8(7):e2920. PubMed ID: 28703800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Notch1 signaling induces epithelial-mesenchymal transition in lens epithelium cells during hypoxia.
    Liu L; Xiao W
    BMC Ophthalmol; 2017 Aug; 17(1):135. PubMed ID: 28764685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miRNA-181a inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells.
    Dong N; Tang X; Xu B
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):993-1001. PubMed ID: 25626972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Let-7a-5p represses proliferation, migration, invasion and epithelial-mesenchymal transition by targeting Smad2 in TGF-b2-induced human lens epithelial cells.
    Liu H; Jiang B
    J Biosci; 2020; 45():. PubMed ID: 32345785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dickkopf-1 inhibits Wnt3a-induced migration and epithelial-mesenchymal transition of human lens epithelial cells.
    Liu T; Zhang L; Wang Y; Zhang H; Li L; Bao X
    Exp Eye Res; 2017 Aug; 161():43-51. PubMed ID: 28587752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.