These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31590019)

  • 1. Capacitive deionization for wastewater treatment: Opportunities and challenges.
    Kalfa A; Shapira B; Shopin A; Cohen I; Avraham E; Aurbach D
    Chemosphere; 2020 Feb; 241():125003. PubMed ID: 31590019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Various cell architectures of capacitive deionization: Recent advances and future trends.
    Tang W; Liang J; He D; Gong J; Tang L; Liu Z; Wang D; Zeng G
    Water Res; 2019 Mar; 150():225-251. PubMed ID: 30528919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions.
    Feng C; Hou CH; Chen S; Yu CP
    Chemosphere; 2013 Apr; 91(5):623-8. PubMed ID: 23375820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology.
    Zhao C; Zhang L; Ge R; Zhang A; Zhang C; Chen X
    Chemosphere; 2019 Feb; 217():763-772. PubMed ID: 30448756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoarchitectonics of Metal-Organic Frameworks for Capacitive Deionization via Controlled Pyrolyzed Approaches.
    Wang H; Chen B; Liu DJ; Xu X; Osmieri L; Yamauchi Y
    Small; 2022 Jan; 18(2):e2102477. PubMed ID: 34585513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater.
    Sayed ET; Al Radi M; Ahmad A; Abdelkareem MA; Alawadhi H; Atieh MA; Olabi AG
    Chemosphere; 2021 Jul; 275():130001. PubMed ID: 33984902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents.
    Lee M; Fan CS; Chen YW; Chang KC; Chiueh PT; Hou CH
    Chemosphere; 2019 Nov; 235():413-422. PubMed ID: 31272001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon.
    Bharath G; Hai A; Rambabu K; Ahmed F; Haidyrah AS; Ahmad N; Hasan SW; Banat F
    Environ Res; 2021 Jun; 197():111110. PubMed ID: 33864793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics.
    Li G; Cai W; Zhao R; Hao L
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.
    Suss ME; Biesheuvel PM; Baumann TF; Stadermann M; Santiago JG
    Environ Sci Technol; 2014; 48(3):2008-15. PubMed ID: 24433022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinel LiMn
    Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faradaic Electrodes Open a New Era for Capacitive Deionization.
    Li Q; Zheng Y; Xiao D; Or T; Gao R; Li Z; Feng M; Shui L; Zhou G; Wang X; Chen Z
    Adv Sci (Weinh); 2020 Nov; 7(22):2002213. PubMed ID: 33240769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacitive deionization of a RO brackish water by AC/graphene composite electrodes.
    Chong LG; Chen PA; Huang JY; Huang HL; Wang HP
    Chemosphere; 2018 Jan; 191():296-301. PubMed ID: 29045931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode.
    Yu J; Liu Y; Zhang X; Liu R; Yang Q; Hu S; Song H; Li P; Li A; Zhang S
    Chemosphere; 2022 Apr; 293():133580. PubMed ID: 35026198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards attaining SDG 6: The opportunities available for capacitive deionization technology to provide clean water to the African population.
    Sufiani O; Sahini MG; Elisadiki J
    Environ Res; 2023 Jan; 216(Pt 3):114671. PubMed ID: 36341793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.