BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31590055)

  • 41. A new perspective: Periodontal ligament is a viscoelastic fluid biomaterial as evidenced by dynamic shear creep experiment.
    Zhou J; Song Y; Shi X; Lin J; Zhang C
    J Mech Behav Biomed Mater; 2021 Jan; 113():104131. PubMed ID: 33125951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modified Bilston nonlinear viscoelastic model for finite element head injury studies.
    Shen F; Tay TE; Li JZ; Nigen S; Lee PV; Chan HK
    J Biomech Eng; 2006 Oct; 128(5):797-801. PubMed ID: 16995770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Viscoelastic characterization of the porcine temporomandibular joint disc under unconfined compression.
    Allen KD; Athanasiou KA
    J Biomech; 2006; 39(2):312-22. PubMed ID: 16321633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical properties of the airway tree: heterogeneous and anisotropic pseudoelastic and viscoelastic tissue responses.
    Eskandari M; Arvayo AL; Levenston ME
    J Appl Physiol (1985); 2018 Sep; 125(3):878-888. PubMed ID: 29745796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomechanical properties of the stomach: A comprehensive comparative analysis of human and porcine gastric tissue.
    Friis SJ; Hansen TS; Poulsen M; Gregersen H; Brüel A; Vinge Nygaard J
    J Mech Behav Biomed Mater; 2023 Feb; 138():105614. PubMed ID: 36527978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic and stress relaxation properties of the whole porcine temporomandibular joint disc under compression.
    Barrientos E; Pelayo F; Tanaka E; Lamela-Rey MJ; Fernández-Canteli A
    J Mech Behav Biomed Mater; 2016 Apr; 57():109-15. PubMed ID: 26708739
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Magnetic resonance elastography of the brain: A comparison between pigs and humans.
    Weickenmeier J; Kurt M; Ozkaya E; Wintermark M; Pauly KB; Kuhl E
    J Mech Behav Biomed Mater; 2018 Jan; 77():702-710. PubMed ID: 28919161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microscale assessment of corneal viscoelastic properties under physiological pressures.
    Kazaili A; Geraghty B; Akhtar R
    J Mech Behav Biomed Mater; 2019 Dec; 100():103375. PubMed ID: 31376792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A combined experimental, modeling, and computational approach to interpret the viscoelastic response of the white matter brain tissue during indentation.
    Samadi-Dooki A; Voyiadjis GZ; Stout RW
    J Mech Behav Biomed Mater; 2018 Jan; 77():24-33. PubMed ID: 28888930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bladder wall biomechanics: A comprehensive study on fresh porcine urinary bladder.
    Jokandan MS; Ajalloueian F; Edinger M; Stubbe PR; Baldursdottir S; Chronakis IS
    J Mech Behav Biomed Mater; 2018 Mar; 79():92-103. PubMed ID: 29287227
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age.
    Isaksson H; Malkiewicz M; Nowak R; Helminen HJ; Jurvelin JS
    Bone; 2010 Dec; 47(6):1030-8. PubMed ID: 20813215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards viscoelastic characterisation of the human ulnar nerve: An early assessment using embalmed cadavers.
    Barberio CG; Chaudhry T; Power DM; Tan S; Lawless BM; Espino DM; Wilton JC
    Med Eng Phys; 2019 Feb; 64():15-22. PubMed ID: 30553556
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic mechanical analysis of viscoelastic functions in packable composite resins measured by torsional resonance.
    Papadogiannis Y; Helvatjoglu-Antoniades M; Lakes RS
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):327-35. PubMed ID: 15459899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The mechanical behaviour of brain tissue: large strain response and constitutive modelling.
    Hrapko M; van Dommelen JA; Peters GW; Wismans JS
    Biorheology; 2006; 43(5):623-36. PubMed ID: 17047281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How preservation time changes the linear viscoelastic properties of porcine liver.
    Wex C; Stoll A; Fröhlich M; Arndt S; Lippert H
    Biorheology; 2013; 50(3-4):115-31. PubMed ID: 23863278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterizing the compression-dependent viscoelastic properties of human hepatic pathologies using dynamic compression testing.
    DeWall RJ; Bharat S; Varghese T; Hanson ME; Agni RM; Kliewer MA
    Phys Med Biol; 2012 Apr; 57(8):2273-86. PubMed ID: 22459948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Region-Dependent Viscoelastic Properties of Human Brain Tissue Under Large Deformations.
    Sundaresh SN; Finan JD; Elkin BS; Basilio AV; McKhann GM; Morrison B
    Ann Biomed Eng; 2022 Nov; 50(11):1452-1460. PubMed ID: 35034227
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Viscoelastic characterization of injured brain tissue after controlled cortical impact (CCI) using a mouse model.
    Qiu S; Jiang W; Alam MS; Chen S; Lai C; Wang T; Li X; Liu J; Gao M; Tang Y; Li X; Zeng J; Feng Y
    J Neurosci Methods; 2020 Jan; 330():108463. PubMed ID: 31698000
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching.
    Babaei B; Velasquez-Mao AJ; Thomopoulos S; Elson EL; Abramowitch SD; Genin GM
    J Mech Behav Biomed Mater; 2017 May; 69():193-202. PubMed ID: 28088071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.