These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31590066)

  • 1. A multi-segment modelling approach for foot trajectory estimation using inertial sensors.
    Okkalidis N; Marinakis G; Gatt A; Bugeja MK; Camilleri KP; Falzon O
    Gait Posture; 2020 Jan; 75():22-27. PubMed ID: 31590066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B; Rochat S; Büla CJ; Aminian K
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smoother-Based 3-D Foot Trajectory Estimation Using Inertial Sensors.
    Hao M; Chen K; Fu C
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3534-3542. PubMed ID: 30932822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of foot placement and its variability with inertial sensors.
    Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD
    Gait Posture; 2013 Sep; 38(4):974-80. PubMed ID: 23810335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can We Accurately Measure Axial Segment Coordination during Turning Using Inertial Measurement Units (IMUs)?
    Khobkhun F; Hollands MA; Richards J; Ajjimaporn A
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring highly accurate foot position and angle trajectories with foot-mounted IMUs in clinical practice.
    Jocham AJ; Laidig D; Guggenberger B; Seel T
    Gait Posture; 2024 Feb; 108():63-69. PubMed ID: 37988888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wearable system for multi-segment foot kinetics measurement.
    Rouhani H; Favre J; Crevoisier X; Aminian K
    J Biomech; 2014 May; 47(7):1704-11. PubMed ID: 24657105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical information fusion for global displacement estimation in microsensor motion capture.
    Meng X; Zhang ZQ; Wu JK; Wong WC
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):2052-63. PubMed ID: 23446028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application.
    Van den Herrewegen I; Cuppens K; Broeckx M; Barisch-Fritz B; Vander Sloten J; Leardini A; Peeraer L
    J Biomech; 2014 Aug; 47(11):2531-9. PubMed ID: 24998032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial Measurement Unit-Based Estimation of Foot Trajectory for Clinical Gait Analysis.
    Hori K; Mao Y; Ono Y; Ora H; Hirobe Y; Sawada H; Inaba A; Orimo S; Miyake Y
    Front Physiol; 2019; 10():1530. PubMed ID: 31998138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Foot Trajectory and Stride Length during Level Ground Running Using Foot-Mounted Inertial Measurement Units.
    Suzuki Y; Hahn ME; Enomoto Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of gait parameters with inertial sensors and inverse kinematics.
    Bötzel K; Olivares A; Cunha JP; Górriz Sáez JM; Weiss R; Plate A
    J Biomech; 2018 Apr; 72():207-214. PubMed ID: 29602474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of foot pose and trajectory estimation methods using inertial and auxiliary sensors for kinematic gait analysis.
    Okkalidis N; Camilleri KP; Gatt A; Bugeja MK; Falzon O
    Biomed Tech (Berl); 2020 Jun; ():. PubMed ID: 32589591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data.
    Benoussaad M; Sijobert B; Mombaur K; Coste CA
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.