These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31590066)

  • 21. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional continuous gait trajectory estimation using single Shank-Worn inertial measurement units and clinical walk test application.
    Uchitomi H; Hirobe Y; Miyake Y
    Sci Rep; 2022 Mar; 12(1):5368. PubMed ID: 35354893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: A systematic review and meta-analysis.
    Vienne-Jumeau A; Quijoux F; Vidal PP; Ricard D
    Ann Phys Rehabil Med; 2020 Mar; 63(2):138-147. PubMed ID: 31421274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods.
    Storm FA; Buckley CJ; Mazzà C
    Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors.
    Mariani B; Hoskovec C; Rochat S; Büla C; Penders J; Aminian K
    J Biomech; 2010 Nov; 43(15):2999-3006. PubMed ID: 20656291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of Different Algorithms for Calculating Velocity and Stride Length in Running Using Inertial Measurement Units.
    Zrenner M; Gradl S; Jensen U; Ullrich M; Eskofier BM
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30513595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.
    Sabatini AM; Ligorio G; Mannini A
    Biomed Eng Online; 2015 Nov; 14():106. PubMed ID: 26597696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.
    Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A
    J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of foot pitch angle estimation using inertial measurement unit against marker-based optical 3D motion capture system.
    Sharif Bidabadi S; Murray I; Lee GYF
    Biomed Eng Lett; 2018 Aug; 8(3):283-290. PubMed ID: 30603212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-Life Measurement of Tri-Axial Walking Ground Reaction Forces Using Optimal Network of Wearable Inertial Measurement Units.
    Shahabpoor E; Pavic A; Brownjohn JMW; Billings SA; Guo LZ; Bocian M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1243-1253. PubMed ID: 29877849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs).
    Ayachi FS; Nguyen HP; Lavigne-Pelletier C; Goubault E; Boissy P; Duval C
    Physiol Meas; 2016 Mar; 37(3):442-61. PubMed ID: 26914432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection.
    Nazarahari M; Khandan A; Khan A; Rouhani H
    J Biomech; 2022 Jan; 130():110880. PubMed ID: 34871897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of Tri-Axial Walking Ground Reaction Forces of Left and Right Foot from Total Forces in Real-Life Environments.
    Shahabpoor E; Pavic A
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29921797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy of three methods in gait event detection during overground running.
    Mo S; Chow DHK
    Gait Posture; 2018 Jan; 59():93-98. PubMed ID: 29028626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of multi-segment foot joint angles during gait using a wearable system.
    Rouhani H; Favre J; Crevoisier X; Aminian K
    J Biomech Eng; 2012 Jun; 134(6):061006. PubMed ID: 22757503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vertical Jump Height Estimation Algorithm Based on Takeoff and Landing Identification Via Foot-Worn Inertial Sensing.
    Wang J; Xu J; Shull PB
    J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29238806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.
    Bruening DA; Cooney KM; Buczek FL
    Gait Posture; 2012 Apr; 35(4):529-34. PubMed ID: 22421190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.