These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31590099)

  • 1. Data analysis software package for radionuclide standardization with a digital coincidence counting system.
    Brancaccio F; Dias MS; Koskinas MF; Moreira DS; de Toledo F
    Appl Radiat Isot; 2020 Jan; 155():108900. PubMed ID: 31590099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary standardization and determination of gamma ray emission intensities of Ho-166.
    Yamazaki IM; Koskinas MF; Moreira DS; Semmler R; Brancaccio F; Dias MS
    Appl Radiat Isot; 2020 Oct; 164():109237. PubMed ID: 32554127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary standardization of 57Co.
    Koskinas MF; Moreira DS; Yamazaki IM; de Toledo F; Brancaccio F; Dias MS
    Appl Radiat Isot; 2010; 68(7-8):1344-8. PubMed ID: 20042343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardization of (59)Fe by 4π(PC)β-γ software coincidence system.
    Koskinas MF; Polillo G; Brancaccio F; Yamazaki IM; Dias MS
    Appl Radiat Isot; 2016 Mar; 109():386-388. PubMed ID: 26688361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a calculation software for 4πβ-γ digital coincidence counting and its application to
    Şahin NK; Ergün Ş
    Appl Radiat Isot; 2021 Jun; 172():109686. PubMed ID: 33725502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standardization of (99m)Tc by means of a software coincidence system.
    Brito AB; Koskinas MF; Litvak F; Toledo F; Dias MS
    Appl Radiat Isot; 2012 Sep; 70(9):2097-102. PubMed ID: 22425415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation to positron emitter standardized by means of 4pibeta-gamma coincidence system--application to 22Na.
    Dias MS; Tongu ML; Takeda MN; Koskinas MF
    Appl Radiat Isot; 2010; 68(7-8):1362-6. PubMed ID: 20056429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast digital 4πβ-4πγ coincidence counting with offline analysis at IRA.
    Teresa Durán M; Nedjadi Y; Juget F; Bochud F; Bailat C
    Appl Radiat Isot; 2018 Apr; 134():329-336. PubMed ID: 28988936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital coincidence counting (DCC) and its use in the corrections for out-of-channel gamma events in 4pi beta-gamma coincidence counting.
    Keightle JD; Watt GC
    Appl Radiat Isot; 2002; 56(1-2):205-10. PubMed ID: 11839016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 60 years of absolute standardization of radionuclides by coincidence counting methods in the Romanian metrology laboratory.
    Sahagia M; Grigorescu EL; Luca A; Wätjen AC; Ivan C; Antohe A; Ioan MR
    Appl Radiat Isot; 2021 Aug; 174():109707. PubMed ID: 33975228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standardization of (241)Am, (124)Sb and (131)I by live-timed anti-coincidence counting with extending dead time.
    da Silva CJ; Iwahara A; Poledna R; de Oliveira EM; de Prinzio MA; Delgado JU; Lopes RT
    Appl Radiat Isot; 2008; 66(6-7):886-9. PubMed ID: 18356060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Standardization of (67)Ga using a 4pi(LS)beta-gamma anti-coincidence system.
    Bobin C; Bouchard J; Hamon C; Iroulart MG; Plagnard J
    Appl Radiat Isot; 2007 Jul; 65(7):757-63. PubMed ID: 17379531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standardization of the radionuclides (60)Co and (59)Fe by digital 4πβ(PC)-γ(NaI) coincidence counting.
    Zhang M; Yao S; Liang J; Liu H
    Appl Radiat Isot; 2016 Mar; 109():341-344. PubMed ID: 26651175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of a coincidence system using plastic scintillators in 4pi geometry.
    Dias MS; Piuvezam-Filho H; Koskinas MF
    Appl Radiat Isot; 2008; 66(6-7):905-8. PubMed ID: 18353658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standardisation of ⁶⁴Cu using a software coincidence counting system.
    Havelka M; Sochorová J
    Appl Radiat Isot; 2014 May; 87():203-6. PubMed ID: 24332340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance demonstration of 4πβ(LS)-γ coincidence counting system for standardization of radionuclides with complex decay scheme.
    Kulkarni DB; Anuradha R; Joseph L; Kulkarni MS; Tomar BS
    Appl Radiat Isot; 2016 Feb; 108():24-29. PubMed ID: 26678524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standardization of
    Bobin C; Thiam C; Bouchard J
    Appl Radiat Isot; 2018 Apr; 134():252-256. PubMed ID: 28676277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of pulse mixing method in software coincidence counting.
    Havelka M; Auerbach P; Sochorová J
    Appl Radiat Isot; 2004; 60(2-4):409-13. PubMed ID: 14987676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standardisation of 124SB and 152EU using software coincidence counting system.
    Havelka M; Sochorová J
    Appl Radiat Isot; 2010; 68(7-8):1330-4. PubMed ID: 20079656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disintegration rate and gamma-ray emission probability per decay measurement of Cu-64.
    Yamazaki IM; Koskinas MF; Moreira DS; Takeda MN; Dias MS
    Appl Radiat Isot; 2018 Apr; 134():312-315. PubMed ID: 28927836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.