These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31590319)

  • 1. The Absence of Pyruvate Kinase Affects Glucose-Dependent Carbon Catabolite Repression in
    Sousa J; Westhoff P; Methling K; Lalk M
    Metabolites; 2019 Oct; 9(10):. PubMed ID: 31590319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Lv X; Li J; Du G; Liu L
    Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in
    Charbonnier T; Le Coq D; McGovern S; Calabre M; Delumeau O; Aymerich S; Jules M
    mBio; 2017 Oct; 8(5):. PubMed ID: 28974613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The
    Ries LNA; José de Assis L; Rodrigues FJS; Caldana C; Rocha MC; Malavazi I; Bayram Ö; Goldman GH
    G3 (Bethesda); 2018 Jul; 8(7):2445-2463. PubMed ID: 29794164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactin, a quorum sensing signal molecule, globally affects the carbon metabolism in
    Wen J; Zhao X; Si F; Qi G
    Metab Eng Commun; 2021 Jun; 12():e00174. PubMed ID: 34094854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis.
    Meyer H; Weidmann H; Mäder U; Hecker M; Völker U; Lalk M
    Mol Biosyst; 2014 Jul; 10(7):1812-23. PubMed ID: 24727859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolite repression-resistant mutants of Bacillus subtilis.
    Takahashi I
    Can J Microbiol; 1979 Nov; 25(11):1283-7. PubMed ID: 120218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant.
    Fry B; Zhu T; Domach MM; Koepsel RR; Phalakornkule C; Ataai MM
    Appl Environ Microbiol; 2000 Sep; 66(9):4045-9. PubMed ID: 10966427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.
    Ma W; Liu Y; Shin HD; Li J; Chen J; Du G; Liu L
    Bioresour Technol; 2018 Feb; 250():642-649. PubMed ID: 29220808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes.
    Nagarajan DR; Krishnan C
    Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
    Kleijn RJ; Buescher JM; Le Chat L; Jules M; Aymerich S; Sauer U
    J Biol Chem; 2010 Jan; 285(3):1587-96. PubMed ID: 19917605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation.
    Shimizu K; Matsuoka Y
    Biotechnol Adv; 2019 Dec; 37(8):107441. PubMed ID: 31472206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino Acid Catabolism in
    Halsey CR; Lei S; Wax JK; Lehman MK; Nuxoll AS; Steinke L; Sadykov M; Powers R; Fey PD
    mBio; 2017 Feb; 8(1):. PubMed ID: 28196956
    [No Abstract]   [Full Text] [Related]  

  • 16. [Knockout of the ccpA gene in Bacillus subtilis and influence on riboflavin production].
    Ying M; Ban R
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):23-7. PubMed ID: 16579459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Crh-specific function in carbon catabolite repression in Bacillus subtilis.
    Warner JB; Lolkema JS
    FEMS Microbiol Lett; 2003 Mar; 220(2):277-80. PubMed ID: 12670692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
    Dauner M; Storni T; Sauer U
    J Bacteriol; 2001 Dec; 183(24):7308-17. PubMed ID: 11717290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced recombinant protein production in pyruvate kinase mutant of Bacillus subtilis.
    Pan Z; Cunningham DS; Zhu T; Ye K; Koepsel RR; Domach MM; Ataai MM
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1769-78. PubMed ID: 19787348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C NMR evidence for pyruvate kinase flux attenuation underlying suppressed acid formation in Bacillus subtilis.
    Phalakornkule C; Fry B; Zhu T; Kopesel R; Ataai MM; Domach MM
    Biotechnol Prog; 2000; 16(2):169-75. PubMed ID: 10753441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.