These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31590431)

  • 1. Yield Stress and Reversible Strain in Titanium Nickelide Alloys after Warm Abc Pressing.
    Lotkov A; Grishkov V; Baturin A; Timkin V; Zhapova D
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31590431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal Structure Defects in Titanium Nickelide after
    Lotkov A; Grishkov V; Laptev R; Mironov Y; Zhapova D; Girsova N; Gusarenko A; Barmina E; Kashina O
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.
    Takeda K; Tobushi H; Pieczyska EA
    Materials (Basel); 2012 May; 5(5):909-921. PubMed ID: 28817016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superelastic behavior of a β-type titanium alloy.
    Zhang DC; Mao YF; Yan M; Li JJ; Su EL; Li YL; Tan SW; Lin JG
    J Mech Behav Biomed Mater; 2013 Apr; 20():29-35. PubMed ID: 23455161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites.
    Zhang X; Zong H; Cui L; Fan X; Ding X; Sun J
    Sci Rep; 2017 Apr; 7():46360. PubMed ID: 28402321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.
    Zhu Y; Wang L; Wang M; Liu Z; Qin J; Zhang D; Lu W
    J Mech Behav Biomed Mater; 2012 Aug; 12():151-9. PubMed ID: 22732481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Phase Transformations and Physical and Mechanical Properties of Cu-Al-Ni Shape Memory Alloys Subjected to Severe Plastic Deformation and Annealing.
    Svirid AE; Pushin VG; Kuranova NN; Makarov VV; Ustyugov YM
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superelasticity Evaluation of the Biocompatible Ti-17Nb-6Ta Alloy.
    Keshtta A; Gepreel MA
    J Healthc Eng; 2019; 2019():8353409. PubMed ID: 30728927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy.
    Tahara M; Okano N; Inamura T; Hosoda H
    Sci Rep; 2017 Nov; 7(1):15715. PubMed ID: 29146921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Shear Stress Determination in Tubular Specimens under Torsion in the Elastic-Plastic Strain Range from the Perspective of Fatigue Analysis.
    Seyda J; Pejkowski Ł; Skibicki D
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33297541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications.
    Sheremetyev V; Brailovski V; Prokoshkin S; Inaekyan K; Dubinskiy S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():935-44. PubMed ID: 26478389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy.
    Leitner T; Sabirov I; Pippan R; Hohenwarter A
    J Mech Behav Biomed Mater; 2017 Jul; 71():337-348. PubMed ID: 28399494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yielding, plastic flow, and fracture behavior of ultra-high molecular weight polyethylene used in total joint replacements.
    Kurtz SM; Pruitt L; Jewett CW; Crawford RP; Crane DJ; Edidin AA
    Biomaterials; 1998 Nov; 19(21):1989-2003. PubMed ID: 9863533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling and memory of intraday volatility return intervals in stock markets.
    Wang F; Yamasaki K; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026117. PubMed ID: 16605408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of mechanical and microstructural properties of constrained groove pressed nitinol shape memory alloy for biomedical applications.
    Bhardwaj A; Gupta AK; Padisala SK; Poluri K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():730-742. PubMed ID: 31147045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and Characterization on Dynamic Recrystallization in Casting AZ31 Mg Alloys Under Plane Strain Compression.
    Xu L; Xiang M; Wang J; Zhang J; Wang C; Xie C
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31978990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternate stresses and temperature variation as factors of influence of ultrasonic vibration on mechanical and functional properties of shape memory alloys.
    Belyaev S; Volkov A; Resnina N
    Ultrasonics; 2014 Jan; 54(1):84-9. PubMed ID: 23870387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape memory effect and superelasticity in a strain glass alloy.
    Wang Y; Ren X; Otsuka K
    Phys Rev Lett; 2006 Dec; 97(22):225703. PubMed ID: 17155814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Change in Ni-Fe-Ga Magnetic Shape Memory Alloys after Severe Plastic Deformation.
    Gurau G; Gurau C; Tolea F; Sampath V
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique.
    Zhao Y; Gu Y; Guo Y
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33668939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.