These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31590537)

  • 1. Parameter dependence of acoustic mode quantities in an idealized model for shallow-water nonlinear internal wave ducts.
    Milone MA; DeCourcy BJ; Lin YT; Siegmann WL
    J Acoust Soc Am; 2019 Sep; 146(3):1934. PubMed ID: 31590537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the parameter sensitivity of acoustic mode quantities for an idealized shelf-slope front.
    DeCourcy BJ; Lin YT; Siegmann WL
    J Acoust Soc Am; 2018 Feb; 143(2):706. PubMed ID: 29495735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas.
    Lin YT; McMahon KG; Lynch JF; Siegmann WL
    J Acoust Soc Am; 2013 Jan; 133(1):37-49. PubMed ID: 23297881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area.
    Lin YT; Duda TF; Lynch JF
    J Acoust Soc Am; 2009 Oct; 126(4):1752-65. PubMed ID: 19813790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Horizontal Lloyd mirror patterns from straight and curved nonlinear internal waves.
    McMahon KG; Reilly-Raska LK; Siegmann WL; Lynch JF; Duda TF
    J Acoust Soc Am; 2012 Feb; 131(2):1689-700. PubMed ID: 22352598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional coupled mode analysis of internal-wave acoustic ducts.
    Shmelev AA; Lynch JF; Lin YT; Schmidt H
    J Acoust Soc Am; 2014 May; 135(5):2497-512. PubMed ID: 24815234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
    Duda TF; Lin YT; Reeder DB
    J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximate formulas and physical interpretations for horizontal acoustic modes in a shelf-slope front model.
    DeCourcy BJ; Lin YT; Siegmann WL
    J Acoust Soc Am; 2016 Jul; 140(1):EL20. PubMed ID: 27475206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic attenuation of a curved duct containing a curved axial microperforated panel.
    Yang C
    J Acoust Soc Am; 2019 Jan; 145(1):501. PubMed ID: 30710927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal coherence of acoustic rays and modes using the path integral approach.
    Yang TC
    J Acoust Soc Am; 2012 Jun; 131(6):4450-60. PubMed ID: 22712918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.
    Colosi JA
    J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherence of acoustic modes propagating through shallow water internal waves.
    Rouseff D; Turgut A; Wolf SN; Finette S; Orr MH; Pasewark BH; Apel JR; Badiey M; Chiu CS; Headrick RH; Lynch JF; Kemp JN; Newhall AE; von der Heydt K; Tielbuerger D
    J Acoust Soc Am; 2002 Apr; 111(4):1655-66. PubMed ID: 12002848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional acoustic scattering from a penetrable layered cylindrical obstacle in a horizontally stratified ocean waveguide.
    Athanassoulis GA; Prospathopoulos AM
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2406-17. PubMed ID: 10830363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of front width on acoustic ducting by a continuous curved front over a sloping bottom.
    DeCourcy BJ; Lin YT; Siegmann WL
    J Acoust Soc Am; 2019 Sep; 146(3):1923. PubMed ID: 31590560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple scattering in random dispersions of spherical scatterers: Effects of shear-acoustic interactions.
    Pinfield VJ; Forrester DM
    J Acoust Soc Am; 2017 Jan; 141(1):649. PubMed ID: 28147598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic Eigenvalues of a Quasispherical Resonator: Second Order Shape Perturbation Theory for Arbitrary Modes.
    Mehl JB
    J Res Natl Inst Stand Technol; 2007; 112(3):163-73. PubMed ID: 27110463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High frequency normal mode statistics in a shallow water waveguide: the effect of random linear internal waves.
    Raghukumar K; Colosi JA
    J Acoust Soc Am; 2014 Jul; 136(1):66-79. PubMed ID: 24993196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural beam focusing of non-axisymmetric guided waves in large-diameter pipes.
    Li J; Rose JL
    Ultrasonics; 2006 Jan; 44(1):35-45. PubMed ID: 16182330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal coherence of sound transmissions in deep water revisited.
    Yang TC
    J Acoust Soc Am; 2008 Jul; 124(1):113-127. PubMed ID: 18646959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistics of low-frequency normal-mode amplitudes in an ocean with random sound-speed perturbations: shallow-water environments.
    Colosi JA; Duda TF; Morozov AK
    J Acoust Soc Am; 2012 Feb; 131(2):1749-61. PubMed ID: 22352603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.